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Topics

● EAR overview

● Running jobs with EAR

● Job Monitoring & optimization

● Data visualization

https://gitlab.bsc.es/ear_team/ear/-/wikis/home
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What’s EAR: System software for energy 
management and optimization

System monitoring and 
Job Accounting

Reports system power 
consumption

Job energy accounting 
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Powerful application 
performance and 
power monitoring

Runtime library to monitor 
performance and power  
dynamically without any 
application modification
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Energy-efficient 
system

Runtime energy optimization, 
Cluster power management and 
Cluster and node powercap. 
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EAR Goals and Components

● To be 

● Easy to use

● Transparent for users 

● Powerful for developers

● To optimize energy at runtime

● To be flexible and configurable

● Power management

EAR

EARD

EARDBD

EARGMDEARL

EARPLUGIN

EAR 
components
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Node Monitor and Manager

System Power Manager (and 
monitor)Job Manager

DB Manager

Scheduler plugin



EAR architecture
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EARLib

CPU GPU

EARD

Application

EARLib

CPU GPU

EARD

Application

EARLib

CPU

EARD

Application

EARLib

CPU

EAR DB Manager EAR DB Manager

EARGM:  System power manager

Job Optimization,  
monitoring, power 
limits

DB

Cluster
   -     monitoring

- Optimization
- Power limits



EAR components

6



EARD: Node Manager

● Linux service running in all the compute nodes (1 x compute node)
● With root privileges
● EARD offers

○ Node monitoring
○ Basic Job accounting
○ Node powercap
○ API for local  metrics readings and management operations (used by EAR library) 
○ API for external power and management 

● Applies energy settings described in ear conf file
○ Default policy, frequency
○ Controls EAR privileged users/groups/accounts
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EARDBD: Data Base manager

● Linux service running in service nodes

● Database manager. Connects with DB server

● 1..N EARDBD can be run in the system

● EARDBD offers: Data aggregation and Data buffering
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ISC2024 EAR tutorial 

EARL: EAR Job Manager

● User-level Runtime library

● 100% transparent in most of the use cases with the scheduler plugin support

○ SLURM, PBS, OAR (REGALE)

● Energy and performance monitoring

● Dynamic energy optimization

● Extensible reporting mechanism

○ Multiple report plugins can be used: DB, CSV, etc 
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ISC2024 EAR tutorial 

EARGMD: Global/System Power Manager

● Distributed service

● Heterogeneous cluster support : CPU and CPU+GPU

● Energy&Power monitoring for the whole cluster

● Cluster powercap
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ISC2024 EAR tutorial 

Scheduler plugin

● SLURM SPANK plugin, PBS and OAR supported

● Intercepts job/step creation and

○ Connects with EARD to report scheduling events : new job / end job for example

○ Configures the environment for the automatic execution of EAR and environment 

variables
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EAR Job Manager

Performance metrics and energy optimization
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EAR Library

● User-level Runtime library

● Transparent to users through scheduler plugin (LD_PRELOAD used)

○ Few exceptions need some environment variables: Ex. Singularity

● Application  energy and performance monitoring

● Application dynamic energy optimization

● Extensible design based on plugins

○ Policies, models, reporting, etc

● Compatible with other optimization tools

○ If requested, CNTD is loaded by EAR and both optimizations are applied (REGALE)
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EAR JM lifecycle/stages
Loop 

detection/Time 
guided

Runtime Signature 
computation

Phases 
Classification

Apply energy 
models

Select 
CPU/Memory/GPU 

frequency

Report runtime 
Signature

 

IO phase
GPU bound phase
GPU  idle
CPU busy waiting
CPU and GPU 

Specific Frequency 
settings

Computational
phase

● Monitoring
○ Runtime loop detection (MPI only).
○ OR Time guided.
○ Automatic configuration of chunks for 

performance and power accuracy.
● Signatures report

○ Average per jobid/stepid/node.
○ Runtime metrics computed for chunks.

chunk = set of consecutive iterations with enough 
time to compute the power (def=10 sec.)
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Running jobs with EAR 
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Jobs submission/accounting schema

(2) eacct -j jobid
(1)
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- Cluster configuration: Default policy, default limits etc
- Optimization is 100% automatic based on application phases automatically detected



Job submission use cases
● Without EAR library 100% transparent
● With EAR library: To be 100% automatic EAR library needs

○ Symbol detection
○ Scheduler support (sbatch, srun or salloc)

● erun command or environment variables for not 100% automatic cases

17https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide#use-cases 

Use case Bootstrap Automatic

MPI Intel/OpenMPI [+ others] srun yes

Intel  [+ others] mpirun yes

OpenMPI [+ others] mpirun no : use erun

OpenMP srun yes (or use erun)

CUDA srun yes (or use erun)

python srun yes (or use erun)

Singularity (+any use case) srun yes + module or env var 
support

https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide#use-cases


Job submission + EAR library options

● Many of the job job scripts will work without modification.
● EAR flags in ”help”  

[julitac@int1 ~]$ sbatch --help|grep ear
      --ear=on|off                       Enables/disables Energy Aware Runtime Library (default OFF)
      --ear-policy=policy_name Selects an energy policy for EAR (monitoring, min_energy, min_time)
      --ear-cpufreq=frequency   Specifies the CPU frequency to be used by EAR , to be used with  monitoring
      --ear-user-db=file              Specifies the file to save the job applications metrics (csv format)
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Memory and GPU frequency also supported with environment variables. See wiki

https://gitlab.bsc.es/ear_team/ear/-/wikis/home
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Special cases (I) 

● MPI+Python is not transparent, the user (or the module) should define the MPI 
version because it cannot be detected.
○ export EAR_LOAD_MPI_VERSION=”open mpi”
○ export EAR_LOAD_MPI_VERSION=”intel”

● Singularity: EAR can be used but EAR paths and env vars must be exported: 
APPTAINER_ENV_XXX, APPTAINER_BIND
○ export 

APPTAINER_BIND="$EAR_INSTALL_PATH:$EAR_INSTALL_PATH:ro,$EAR_TMP:$EAR_TMP:rw"
○ export APPTAINERENV_EAR_INSTALL_PATH=$EAR_INSTALL_PATH
○ export APPTAINERENV_EAR_TMP=$EAR_TMP
○ export APPTAINERENV_EAR_ETC=$EAR_TMP
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Special cases (II) 

● OpenMPI 
○ srun recommended
○ use mpirun + erun 

● Other use cases/frameworks
○ Force EAR to be loaded with env var
○ export EAR_LOADER_APPLICATION=”julia” 
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Monitoring: EAR metrics
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https://gitlab.bsc.es/ear_team/ear/-/wikis/EAR-commands#ear-job-accounting-eacct 

https://gitlab.bsc.es/ear_team/ear/-/wikis/EAR-commands#ear-job-accounting-eacct


Monitoring

● Jobs executed without EAR JM (ear = off) report basic job accounting
○ Job/step/node identification
○ Job/step/node execution time 
○ Job/step/node energy consumption

● Jobs executed with EAR JM (ear =on) report advanced job accounting
○ Job/step/node identification
○ Job/step/node/dynamic performance metrics (measured by EAR library)
○ Job/step/node/dynamic power metrics (measured by EAR library)

● Data is reported in EAR DB
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How to get application data

1. With EAR job accounting command eacct: Command line with pre-defined 
queries. Multiple filters supported

a. average
b. per node
c. runtime
d. pre-selected column in stdout or full data in CSV file

2. Directly from EAR library 
a. csv with timestamp included: --ear-user-db=filename (prefix for the file)
b. Additional  report plugins can be used with env var.

i. EAR_REPORT_ADD=plugin1.so:plug2.so 
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Example: https://gitlab.bsc.es/ear_team/ear/-/blob/master/src/report/log.c 

https://gitlab.bsc.es/ear_team/ear/-/blob/master/src/report/log.c


Basic MPI example
#!/bin/bash

#SBATCH -p rome
#SBATCH -t 00:15:00
#SBATCH --nodes=1
#SBATCH --exclusive

#SBATCH --output=NPB.%j.out
#SBATCH --error=NPB.%j.err
#SBATCH --job-name=NPB
#SBATCH –ear=on

module load 2023
module load foss/2023a

PROJECT_DIR=/projects/0/energy-course

srun --ntasks=128 $PROJECT_DIR/NPB3.4-MZ-MPI/sp-mz.C.x
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Job submission examples
#!/bin/bash
#SBATCH –ntasks=YYY
#### EAR=ON will load all the steps with EAR library
#SBATCH --ear=on

mkdir -p logs
# CASE 1: Default: EAR library on because of headers
srun application
# Runtime metrics reported ON
export EARL_REPORT_LOOPS=1
# CASE 2:  mpirun + ear-user-db → CSV file
export I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS="--ear-user-db=logs/app"
mpirun application
# CASE 3: Using srun + ear-user-db → CSV file
srun --ear-user-db=logs/bt.srun application
# CASE 4: Using erun 
module load ear
mpirun -n XXXX  erun --ear=on --program="application arg1 arg2…argn”
# CASE 5: EAR library off for this steps
srun --ear=off application

25



eacct: Energy accounting

[julitac@int3 example]$ eacct -j 1483484 
JOB-STEP USER       APPLICATION      POLICY NODES AVG/DEF/IMC(GHz)      TIME(s)    POWER(W) GBS     CPI      ENERGY(J)    GFLOPS/W IO(MBs) MPI%  G-POW(T/U)   G-FREQ  
G-UTIL(G/MEM)
1483484-sb   julitac    128nodes_16cores NP     16    2.35/2.60/---      972.00     375.71   ---     ---         5843040      ---      ---     ---   ---           ---     ---          
1483484-1    julitac    128nodes_16cores MT     16    2.35/2.40/1.47   492.26     373.53   28.44   0.46  2942015      0.0084   250.8   71.7  0.00/---      ---     ---          
1483484-0    julitac    128nodes_16cores ME     16    2.55/2.60/1.47   460.68     381.00   30.37   0.47  2808271      0.0088   268.2   71.7  0.00/---      ---     ---          

● SLURM jobid/stepid
● Users can only access its own data
● GPU support is per-cluster, Jobs executed in AMD partition will also show GPU metrics with null values.
● By default, average per job.step metrics: All nodes included. Most metrics are averaged, energy is 

accumulated. 
● Main flags:

○ -l → per node
○ -r → runtime metrics (default is off in snellius. Use export EARL_REPORT_LOOPS=1
○ -c filename → save in CSV format in file
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eacct metrics

● CPU metrics
○ AVG/DEF/IMC(GHz): Average CPU frequency, default frequency and average memory frequency. 

Includes all the nodes for the step. In KHz.
○ TIME(s): Step execution time, in seconds.
○ POWER: Average DC node power. (in Watts).
○ GBS: CPU Main memory bandwidth (GB/second). Hint for CPU/Memory bound classification.
○ CPI: CPU Cycles per Instruction. Hint for CPU/Memory bound classification.
○ ENERGY(J): Accumulated node energy. Includes all the nodes. In Joules.
○ GFLOPS/WATT : CPU GFlops per Watt. Hint for energy efficiency.
○ IO(MBs) : IO (read and write) Mega Bytes per second.
○ MPI% : Percentage of MPI time over the total execution time. It’s the average including all the processes 

and nodes.
● GPU metrics

○ G-POW (T/U) : Average GPU power. Accumulated per node and average of all the nodes.
■ T = Total (GPU power consumed even if the process is not using them).
■ U = GPUs used by the job.

○ G-FREQ : Average GPU frequency. Per node and average of all the nodes.
○ G-UTIL(G/MEM) : GPU utilization and GPU memory utilization.

https://gitlab.bsc.es/ear_team/ear/-/wikis/User%20guide#job-accounting-eacct 27
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Tensorflow energy evaluation

28

#!/bin/bash
#SBATCH -p gpu 
#SBATCH -n 1 
#SBATCH  --ntasks-per-node=1 
#SBATCH --gpus=1 
#SBATCH --cpus-per-task=18 
#SBATCH  -t 8:00:00
#SBATCH --ear-user-db=tensorflow_exps → Metrics reported in DB and User local CSV file
module load 2021
module load TensorFlow/2.6.0-foss-2021a-CUDA-11.3.1
module list
 
export OMP_NUM_THREADS=18
export EARL_REPORT_LOOPS=1 → Disabled by default in this cluster

srun -J ResNet50 python benchmark.py  --model=ResNet50 --num-iters=100
srun -J ResNet50_mixed python benchmark.py --mixed-prec --num-iters=100
srun -J ResNet50_disable-tf32 python benchmark.py --model=ResNet50 --disable-tf32 --num-iters=100
srun -J VGG19 python benchmark.py  --model=VGG19 --num-iters=100
srun -J VGG19_mixed python benchmark.py  --model=VGG19 --mixed-prec --num-iters=100
srun -J VGG19_disable-tf32 python benchmark.py  --model=VGG19 --disable-tf32 --num-iters=100
srun -J DenseNet121 python benchmark.py  --model=DenseNet121 --num-iters=100
srun -J DenseNet121_mixed python benchmark.py  --model=DenseNet121 --mixed-prec --num-iters=100
srun -J DenseNet121_disable-tf32 python benchmark.py  --model=DenseNet121 --disable-tf32 --num-iters=100



Tensorflow: GPU application

[julitac@int5 ~]$ eacct -j 5687690
    JOB-STEP USER       APPLICATION      POLICY NODES AVG/DEF/IMC(GHz) TIME(s)    POWER(W) GBS     CPI   ENERGY(J)    GFLOPS/W IO(MBs) MPI%  G-POW 
(T/U)     G-FREQ  G-UTIL(G/MEM)
5687690-sb   julitac    run_tensor.sh    NP     1     2.43/2.40/---    2612.00    448.98   ---     ---   1172725      ---      ---     ---   ---             ---     ---          

5687690-8    julitac    DenseNet121_disa MO     1     2.38/2.40/2.19   358.55     897.17   2.03    0.66  321685       0.0000   0.1     0.0   257.92 /257.92  1.410   92%/44%       
5687690-7    julitac    DenseNet121_mixe MO     1     2.38/2.40/2.19   189.30     876.59   0.82    0.67  165936       0.0000   0.2     0.0   238.88 /238.88  1.410   80%/52%       
5687690-6    julitac    DenseNet121      MO     1     2.38/2.40/2.19        249.38     890.48   0.59    0.66  222070       0.0000   0.1     0.0   251.56 /251.56  1.410   88%/73%   
    
5687690-5    julitac    VGG19_disable-tf MO     1     2.38/2.40/2.19   646.86     877.18   2.33    0.52  567419       0.0000   0.1     0.0   238.58 /238.58  1.410   98%/26%       
5687690-4    julitac    VGG19_mixed      MO     1     2.38/2.40/2.19   248.40     897.64   0.52    0.67  222972       0.0000   0.1     0.0   257.04 /257.04  1.410   96%/51%       
5687690-3    julitac    VGG19            MO     1     2.38/2.40/2.19        261.37     907.44   3.21    0.61  237176       0.0000   0.1     0.0   267.94 /267.94  1.410   96%/59%       

5687690-2    julitac    ResNet50_disable MO     1     2.38/2.40/2.19   302.42     920.38   4.22    0.65  278338       0.0000   0.1     0.0   279.54 /279.54  1.410   94%/43%       
5687690-1    julitac    ResNet50_mixed   MO     1     2.38/2.40/2.19   149.26     873.35   0.80    0.66  130356       0.0000   0.2     0.0   233.60 /233.60  1.403   84%/50%       
5687690-0    julitac    ResNet50         MO     1     2.38/2.40/2.19         196.33     904.09   0.62    0.65  177504       0.0000   0.2     0.0   261.45 /261.45  1.372   87%/70%    
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ISC2024 EAR tutorial 

EACCT  metrics

● CPU Bound phases 
○ Very low CPI , Cycles per instruction, (less than 0.5)
○ Low Memory bandwidth (depends on the architecture)
○ Percentage of MPI influences the CPI (MPI waitings are implemented with busy waiting, 

reduces the CPI)
○ High Gflops 
○ Scale linearly with CPU frequency. Not too much opportunities for energy savings

● Memory bound phases 
○ Medium/High CPI (CPU has to wait for data → increases cycles per instructions)
○ High Memory bandwidth
○ Medium/High Gflops 
○ Can take profit of reducing the CPU frequency. Do not scale linearly with CPU 

frequency
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Job Energy Efficiency metric: CPU jobs

● PUE is the ratio of the total amount of power used by a computer data center 
facility to the power delivered to computing equipment
○ It’s not a  job metric!!

● Being energy efficient is not consuming less power, is doing an optimal utilization 
of the power we consume

● For CPU HPC applications, a traditional metric could be the GFLOPS/Watt
○ GFlops characterize the CPU activity
○ Watts the power consumption

● Not valid for 
○ Data intensive jobs
○ Non-CPU intensive jobs
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Job Energy Efficiency metric: GPU jobs

● GPU metrics reported by default (per-GPU)
○ GPU utilization
○ GPU memory utilization
○ GPU frequency
○ GPU power consumption

● GPU Utilization is not representative enough of the GPU activity
○ NVIDIA GPUs provides more metrics, but many of them are ratios (0…1), for example 

the FP activity
○ Any action on the GPU increases the GPU utilization
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ISC2024 EAR tutorial 

EACCT metrics: what else can be 
observed? 

● Are nodes homogeneous ? Same signatures in all the nodes (-l )
● Are there phases, is it constant? Are runtime signatures the same? (-r)
● How much time my application is in MPI calls??
● GPU utilization
● Impact on power and performance of changing job configuration

○ Example: Problem with GPU utilization in GROMACS-GPU

[julitac@int3 ~]$ eacct -j 1387089
JOB-STEP USER       APPLICATION      POLICY NODES AVG/DEF/IMC(GHz) TIME(s)    POWER(W) GBS     CPI   ENERGY(J)    GFLOPS/W IO(MBs) MPI%  G-POW 
(T/U)   G-FREQ  G-UTIL(G/MEM)
1387089-sb   julitac    rfm_GROMACS_GPU_ NP     1     2.35/2.40/---    6634.00    879.52   ---     ---   5834703      ---      ---     ---   ---           ---     ---          
1387089-2    julitac    rfm_GROMACS_GPU_ MT     1     2.35/2.20/2.02   2886.16    803.91   24.39   0.37  2320201      0.0091   0.1     71.0  333.42/333.42 1.409   10%/0%        
1387089-1    julitac    rfm_GROMACS_GPU_ ME     1     2.35/2.40/2.10   2880.70    847.76   37.46   0.38  2442131      0.0129   0.1     68.1  359.00/359.00 1.409   14%/0%        
1387089-0    julitac    rfm_GROMACS_GPU_ MO     1     2.38/2.40/2.19   833.64     1260.21  152.87  0.56  1050561      0.0425   0.4    26.4  650.88/650.88 1.409   73%/0%        
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Energy optimization
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Static vs Dynamic energy optimization

● Optimal CPU/Memory/GPU depends on the application, input data, architecture, 
number of nodes etc etc

● However, you can be interested in applying DVFS in specific case
● With EAR is easy to ask for CPU frequencies
● EAR offers in some architectures more CPU frequencies than available from the 

OS
● The enode_info command reports the EAR technical specification for the 

computational node

35

Get Node info

Prepare script

Submit

Get data

Analyze



Static vs Dynamic energy optimization
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Get Node info

Prepare script

Submit

Get data

Analyze

Prepare script Submit Be efficient! 

Static optimization loop

Dynamic optimization
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$EAR_INSTALL_PATH/bin/tools/enode_info --cpu
EAR CPU info in node tcn2
EAR CPU info Topology: cpu_count        : 128
core_count       : 128
socket_count     : 2
….. // CPU details
EAR CPU info load
EAR CPU info API: EARD
EAR CPU info num devices:128
EAR CPU info list of CPU frequencies 
PS0: id0, 2600000 KHz
PS1: id1, 2500000 KHz
PS2: id2, 2400000 KHz
PS3: id3, 2300000 KHz
PS4: id4, 2200000 KHz
PS5: id5, 2100000 KHz
PS6: id6, 2000000 KHz
PS7: id7, 1900000 KHz
PS8: id8, 1800000 KHz
PS9: id9, 1700000 KHz
PS10: id10, 1600000 KHz
PS11: id11, 1500000 KHz
EAR CPU info pstate nominal is 0, CPU freq = 2600000 KHz
EAR CPU info governor CPU[0] = conservative
….
EAR CPU info governor CPU[127] = conservative
EAR CPU info curr CPUF[0] = 2601000
..
EAR CPU info curr CPUF[127] = 2601000

#!/bin/bash
#SBATCH --job-name=sp
#SBATCH --ntasks=128
#SBATCH --ear=on
module purge
module load 2022
module load iimpi/2022a

export OMP_NUM_THREADS=1
export EARL_REPORT_LOOPS=1
srun --ear-policy=monitoring --ear-cpufreq=2500000 ./sp-mz.D.128
srun --ear-policy=monitoring --ear-cpufreq=2400000 ./sp-mz.D.128
srun --ear-policy=monitoring --ear-cpufreq=2300000 ./sp-mz.D.128
srun --ear-policy=monitoring --ear-cpufreq=2200000 ./sp-mz.D.128



Energy policies: Computational phases

● Monitoring: 
○ Application analysis
○ Static energy optimization (Manual CPU/Memory/GPU freq selection)

● Minimize energy to solution (min_energy)
○ EAR reduces CPU frequency to save energy with a maximum time penalty 
○ Applications start at default frequency and CPU frequency is (potentially) reduced
○ default frequency = nominal frequency
○ Memory frequency selected with a linear search

● Minimize time to solution (min_time)
○ EAR increases CPU frequency to minimize time for “frequency efficient” codes 
○ Applications that scale well with CPU frequency
○ Default frequency = lower than nominal frequency
○ Application will never run at CPU frequency below the default CPU frequency
○ Memory frequency selected with a linear search
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Common to both policies

● GPU optimization when GPU idleness.
● IO phases detected.
● Turbo can be enabled if configured and CPU bound application.
● Intra-node Load balance .

● GPU frequency selection:
○ Maximum if GPU utilization > 0
○ Minimum if GPU utilization == 0 (power consumption is lower.)

● Version 5.0 will include GPU optimization
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KERNEL SP-MZ.D : ROME (Min_energy vs Nominal): Must be the same node for comparison

[julitac@int5]$ eacct -j 4896747.0
    JOB-STEP USER       APPLI       POLICY NODES AVG/DEF/MEM  TIME(s)   POWER(W) GBS     CPI   ENERGY(J)    GFLOPS/W IO(MBs) MPI%  G-POW (T/U)     
G-FREQ  G-UTIL(G/MEM)
4896747-0    julitac    sp               ME     1     2.16/2.60/1.47   336.75     457.62   197.79  0.69  154102       2.9608   0.0     12.0  0.00/---        ---     
---          
[julitac@int5]$ eacct -j 4896738.0
    JOB-STEP USER       APPLI     POLICY NODES AVG/DEF/MEM TIME(s)    POWER(W)  GBS     CPI   ENERGY(J)    GFLOPS/W IO(MBs) MPI%  G-POW (T/U)     
G-FREQ  G-UTIL(G/MEM)
4896738-0    julitac    sp               MO     1     2.57/2.60/1.47   329.67     519.01   202.73  0.79  171103       2.6666   0.0     11.0  0.00/---        ---     
---              

sbatch --ntasks=192 --partition=rome sp.D.sh
sbatch --ntasks=192 --partition=rome –ear-policy=min_energy sp.D.sh



EAR Data visualization

● https://github.com/sara-nl/ISC-2024-EAR-tutorial/blob/main/tutorials/visualization/
README.md 

● ear-job-analytics: EAR tool to create images with runtime data visualization and 
paraver traces

● Grafana 
○ Running at DC and executing SQL queries (more powerful, but depends on Data 

Center permissions)
○ Local installation: 

■ Grafana server installed and running locally
■ Data gathered in CSV format with eacct and using CSV plugin
■ Not mandatory but more information if loops are in DB
■ Can be use also without EAR DB: –ear-user-db=filename

●

41

https://github.com/sara-nl/ISC-2024-EAR-tutorial/blob/main/tutorials/visualization/README.md
https://github.com/sara-nl/ISC-2024-EAR-tutorial/blob/main/tutorials/visualization/README.md


42

Example:
Palabos: Strong Scaling Benchmark

• Per-node, Per-iteration ”traces”

• CPI (Cycles per instruction)
• Main memory BW (GB/s)
• MPI% (percentage spent in MPI calls)
• I/O (Disk)
• Node Power 



Thanks!

Julita Corbalan julita.corbalan@bsc.es 

 Lluís Alonso (lluis.alonso@bsc.es) 

43

mailto:julita.corbalan@bsc.es
mailto:lluis.alonso@bsc.es

