
EAR : System software for energy
management
Julita Corbalan (julita.corbalan@bsc.es)
Lluís Alonso (lluis.alonso@bsc.es)

1

mailto:julita.corbalan@eas4dc.com
mailto:lluis.alonso@bsc.es

Topics

● EAR overview

● Running jobs with EAR

● Job Monitoring & optimization

● Data visualization

https://gitlab.bsc.es/ear_team/ear/-/wikis/home
2

https://gitlab.bsc.es/ear_team/ear/-/wikis/home

What’s EAR: System software for energy
management and optimization

System monitoring and
Job Accounting

Reports system power
consumption

Job energy accounting

1

Powerful application
performance and
power monitoring

Runtime library to monitor
performance and power
dynamically without any
application modification

2

Energy-efficient
system

Runtime energy optimization,
Cluster power management and
Cluster and node powercap.

3

3

EAR Goals and Components

● To be

● Easy to use

● Transparent for users

● Powerful for developers

● To optimize energy at runtime

● To be flexible and configurable

● Power management

EAR

EARD

EARDBD

EARGMDEARL

EARPLUGIN

EAR
components

4

Node Monitor and Manager

System Power Manager (and
monitor)Job Manager

DB Manager

Scheduler plugin

EAR architecture

EARD

Application

EARLib

CPU GPU

EARD

Application

EARLib

CPU GPU

EARD

Application

EARLib

CPU

EARD

Application

EARLib

CPU

EAR DB Manager EAR DB Manager

EARGM: System power manager

Job Optimization,
monitoring, power
limits

DB

Cluster
 - monitoring

- Optimization
- Power limits

EAR components

6

EARD: Node Manager

● Linux service running in all the compute nodes (1 x compute node)
● With root privileges
● EARD offers

○ Node monitoring
○ Basic Job accounting
○ Node powercap
○ API for local metrics readings and management operations (used by EAR library)
○ API for external power and management

● Applies energy settings described in ear conf file
○ Default policy, frequency
○ Controls EAR privileged users/groups/accounts

7

EARDBD: Data Base manager

● Linux service running in service nodes

● Database manager. Connects with DB server

● 1..N EARDBD can be run in the system

● EARDBD offers: Data aggregation and Data buffering

8

ISC2024 EAR tutorial

EARL: EAR Job Manager

● User-level Runtime library

● 100% transparent in most of the use cases with the scheduler plugin support

○ SLURM, PBS, OAR (REGALE)

● Energy and performance monitoring

● Dynamic energy optimization

● Extensible reporting mechanism

○ Multiple report plugins can be used: DB, CSV, etc

9

ISC2024 EAR tutorial

EARGMD: Global/System Power Manager

● Distributed service

● Heterogeneous cluster support : CPU and CPU+GPU

● Energy&Power monitoring for the whole cluster

● Cluster powercap

10

ISC2024 EAR tutorial

Scheduler plugin

● SLURM SPANK plugin, PBS and OAR supported

● Intercepts job/step creation and

○ Connects with EARD to report scheduling events : new job / end job for example

○ Configures the environment for the automatic execution of EAR and environment

variables

11

EAR Job Manager

Performance metrics and energy optimization

12

EAR Library

● User-level Runtime library

● Transparent to users through scheduler plugin (LD_PRELOAD used)

○ Few exceptions need some environment variables: Ex. Singularity

● Application energy and performance monitoring

● Application dynamic energy optimization

● Extensible design based on plugins

○ Policies, models, reporting, etc

● Compatible with other optimization tools

○ If requested, CNTD is loaded by EAR and both optimizations are applied (REGALE)

13

Reporting

Optimization

Monitoring

Applicati
on

EAR JM lifecycle/stages
Loop

detection/Time
guided

Runtime Signature
computation

Phases
Classification

Apply energy
models

Select
CPU/Memory/GPU

frequency

Report runtime
Signature

IO phase
GPU bound phase
GPU idle
CPU busy waiting
CPU and GPU

Specific Frequency
settings

Computational
phase

● Monitoring
○ Runtime loop detection (MPI only).
○ OR Time guided.
○ Automatic configuration of chunks for

performance and power accuracy.
● Signatures report

○ Average per jobid/stepid/node.
○ Runtime metrics computed for chunks.

chunk = set of consecutive iterations with enough
time to compute the power (def=10 sec.)

14

Running jobs with EAR

15

Jobs submission/accounting schema

(2) eacct -j jobid
(1)

16

- Cluster configuration: Default policy, default limits etc
- Optimization is 100% automatic based on application phases automatically detected

Job submission use cases
● Without EAR library 100% transparent
● With EAR library: To be 100% automatic EAR library needs

○ Symbol detection
○ Scheduler support (sbatch, srun or salloc)

● erun command or environment variables for not 100% automatic cases

17https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide#use-cases

Use case Bootstrap Automatic

MPI Intel/OpenMPI [+ others] srun yes

Intel [+ others] mpirun yes

OpenMPI [+ others] mpirun no : use erun

OpenMP srun yes (or use erun)

CUDA srun yes (or use erun)

python srun yes (or use erun)

Singularity (+any use case) srun yes + module or env var
support

https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide#use-cases

Job submission + EAR library options

● Many of the job job scripts will work without modification.
● EAR flags in ”help”

[julitac@int1 ~]$ sbatch --help|grep ear
 --ear=on|off Enables/disables Energy Aware Runtime Library (default OFF)
 --ear-policy=policy_name Selects an energy policy for EAR (monitoring, min_energy, min_time)
 --ear-cpufreq=frequency Specifies the CPU frequency to be used by EAR , to be used with monitoring
 --ear-user-db=file Specifies the file to save the job applications metrics (csv format)

18

Memory and GPU frequency also supported with environment variables. See wiki

https://gitlab.bsc.es/ear_team/ear/-/wikis/home

https://gitlab.bsc.es/ear_team/ear/-/wikis/home

Special cases (I)

● MPI+Python is not transparent, the user (or the module) should define the MPI
version because it cannot be detected.
○ export EAR_LOAD_MPI_VERSION=”open mpi”
○ export EAR_LOAD_MPI_VERSION=”intel”

● Singularity: EAR can be used but EAR paths and env vars must be exported:
APPTAINER_ENV_XXX, APPTAINER_BIND
○ export

APPTAINER_BIND="$EAR_INSTALL_PATH:$EAR_INSTALL_PATH:ro,$EAR_TMP:$EAR_TMP:rw"
○ export APPTAINERENV_EAR_INSTALL_PATH=$EAR_INSTALL_PATH
○ export APPTAINERENV_EAR_TMP=$EAR_TMP
○ export APPTAINERENV_EAR_ETC=$EAR_TMP

19

Special cases (II)

● OpenMPI
○ srun recommended
○ use mpirun + erun

● Other use cases/frameworks
○ Force EAR to be loaded with env var
○ export EAR_LOADER_APPLICATION=”julia”

20

Monitoring: EAR metrics

21

https://gitlab.bsc.es/ear_team/ear/-/wikis/EAR-commands#ear-job-accounting-eacct

https://gitlab.bsc.es/ear_team/ear/-/wikis/EAR-commands#ear-job-accounting-eacct

Monitoring

● Jobs executed without EAR JM (ear = off) report basic job accounting
○ Job/step/node identification
○ Job/step/node execution time
○ Job/step/node energy consumption

● Jobs executed with EAR JM (ear =on) report advanced job accounting
○ Job/step/node identification
○ Job/step/node/dynamic performance metrics (measured by EAR library)
○ Job/step/node/dynamic power metrics (measured by EAR library)

● Data is reported in EAR DB

22

How to get application data

1. With EAR job accounting command eacct: Command line with pre-defined
queries. Multiple filters supported

a. average
b. per node
c. runtime
d. pre-selected column in stdout or full data in CSV file

2. Directly from EAR library
a. csv with timestamp included: --ear-user-db=filename (prefix for the file)
b. Additional report plugins can be used with env var.

i. EAR_REPORT_ADD=plugin1.so:plug2.so

23

Example: https://gitlab.bsc.es/ear_team/ear/-/blob/master/src/report/log.c

https://gitlab.bsc.es/ear_team/ear/-/blob/master/src/report/log.c

Basic MPI example
#!/bin/bash

#SBATCH -p rome
#SBATCH -t 00:15:00
#SBATCH --nodes=1
#SBATCH --exclusive

#SBATCH --output=NPB.%j.out
#SBATCH --error=NPB.%j.err
#SBATCH --job-name=NPB
#SBATCH –ear=on

module load 2023
module load foss/2023a

PROJECT_DIR=/projects/0/energy-course

srun --ntasks=128 $PROJECT_DIR/NPB3.4-MZ-MPI/sp-mz.C.x

24

Job submission examples
#!/bin/bash
#SBATCH –ntasks=YYY
EAR=ON will load all the steps with EAR library
#SBATCH --ear=on

mkdir -p logs
CASE 1: Default: EAR library on because of headers
srun application
Runtime metrics reported ON
export EARL_REPORT_LOOPS=1
CASE 2: mpirun + ear-user-db → CSV file
export I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS="--ear-user-db=logs/app"
mpirun application
CASE 3: Using srun + ear-user-db → CSV file
srun --ear-user-db=logs/bt.srun application
CASE 4: Using erun
module load ear
mpirun -n XXXX erun --ear=on --program="application arg1 arg2…argn”
CASE 5: EAR library off for this steps
srun --ear=off application

25

eacct: Energy accounting

[julitac@int3 example]$ eacct -j 1483484
JOB-STEP USER APPLICATION POLICY NODES AVG/DEF/IMC(GHz) TIME(s) POWER(W) GBS CPI ENERGY(J) GFLOPS/W IO(MBs) MPI% G-POW(T/U) G-FREQ
G-UTIL(G/MEM)
1483484-sb julitac 128nodes_16cores NP 16 2.35/2.60/--- 972.00 375.71 --- --- 5843040 --- --- --- --- --- ---
1483484-1 julitac 128nodes_16cores MT 16 2.35/2.40/1.47 492.26 373.53 28.44 0.46 2942015 0.0084 250.8 71.7 0.00/--- --- ---
1483484-0 julitac 128nodes_16cores ME 16 2.55/2.60/1.47 460.68 381.00 30.37 0.47 2808271 0.0088 268.2 71.7 0.00/--- --- ---

● SLURM jobid/stepid
● Users can only access its own data
● GPU support is per-cluster, Jobs executed in AMD partition will also show GPU metrics with null values.
● By default, average per job.step metrics: All nodes included. Most metrics are averaged, energy is

accumulated.
● Main flags:

○ -l → per node
○ -r → runtime metrics (default is off in snellius. Use export EARL_REPORT_LOOPS=1
○ -c filename → save in CSV format in file

26

eacct metrics

● CPU metrics
○ AVG/DEF/IMC(GHz): Average CPU frequency, default frequency and average memory frequency.

Includes all the nodes for the step. In KHz.
○ TIME(s): Step execution time, in seconds.
○ POWER: Average DC node power. (in Watts).
○ GBS: CPU Main memory bandwidth (GB/second). Hint for CPU/Memory bound classification.
○ CPI: CPU Cycles per Instruction. Hint for CPU/Memory bound classification.
○ ENERGY(J): Accumulated node energy. Includes all the nodes. In Joules.
○ GFLOPS/WATT : CPU GFlops per Watt. Hint for energy efficiency.
○ IO(MBs) : IO (read and write) Mega Bytes per second.
○ MPI% : Percentage of MPI time over the total execution time. It’s the average including all the processes

and nodes.
● GPU metrics

○ G-POW (T/U) : Average GPU power. Accumulated per node and average of all the nodes.
■ T = Total (GPU power consumed even if the process is not using them).
■ U = GPUs used by the job.

○ G-FREQ : Average GPU frequency. Per node and average of all the nodes.
○ G-UTIL(G/MEM) : GPU utilization and GPU memory utilization.

https://gitlab.bsc.es/ear_team/ear/-/wikis/User%20guide#job-accounting-eacct 27

https://gitlab.bsc.es/ear_team/ear/-/wikis/User%20guide#job-accounting-eacct

Tensorflow energy evaluation

28

#!/bin/bash
#SBATCH -p gpu
#SBATCH -n 1
#SBATCH --ntasks-per-node=1
#SBATCH --gpus=1
#SBATCH --cpus-per-task=18
#SBATCH -t 8:00:00
#SBATCH --ear-user-db=tensorflow_exps → Metrics reported in DB and User local CSV file
module load 2021
module load TensorFlow/2.6.0-foss-2021a-CUDA-11.3.1
module list

export OMP_NUM_THREADS=18
export EARL_REPORT_LOOPS=1 → Disabled by default in this cluster

srun -J ResNet50 python benchmark.py --model=ResNet50 --num-iters=100
srun -J ResNet50_mixed python benchmark.py --mixed-prec --num-iters=100
srun -J ResNet50_disable-tf32 python benchmark.py --model=ResNet50 --disable-tf32 --num-iters=100
srun -J VGG19 python benchmark.py --model=VGG19 --num-iters=100
srun -J VGG19_mixed python benchmark.py --model=VGG19 --mixed-prec --num-iters=100
srun -J VGG19_disable-tf32 python benchmark.py --model=VGG19 --disable-tf32 --num-iters=100
srun -J DenseNet121 python benchmark.py --model=DenseNet121 --num-iters=100
srun -J DenseNet121_mixed python benchmark.py --model=DenseNet121 --mixed-prec --num-iters=100
srun -J DenseNet121_disable-tf32 python benchmark.py --model=DenseNet121 --disable-tf32 --num-iters=100

Tensorflow: GPU application

[julitac@int5 ~]$ eacct -j 5687690
 JOB-STEP USER APPLICATION POLICY NODES AVG/DEF/IMC(GHz) TIME(s) POWER(W) GBS CPI ENERGY(J) GFLOPS/W IO(MBs) MPI% G-POW
(T/U) G-FREQ G-UTIL(G/MEM)
5687690-sb julitac run_tensor.sh NP 1 2.43/2.40/--- 2612.00 448.98 --- --- 1172725 --- --- --- --- --- ---

5687690-8 julitac DenseNet121_disa MO 1 2.38/2.40/2.19 358.55 897.17 2.03 0.66 321685 0.0000 0.1 0.0 257.92 /257.92 1.410 92%/44%
5687690-7 julitac DenseNet121_mixe MO 1 2.38/2.40/2.19 189.30 876.59 0.82 0.67 165936 0.0000 0.2 0.0 238.88 /238.88 1.410 80%/52%
5687690-6 julitac DenseNet121 MO 1 2.38/2.40/2.19 249.38 890.48 0.59 0.66 222070 0.0000 0.1 0.0 251.56 /251.56 1.410 88%/73%

5687690-5 julitac VGG19_disable-tf MO 1 2.38/2.40/2.19 646.86 877.18 2.33 0.52 567419 0.0000 0.1 0.0 238.58 /238.58 1.410 98%/26%
5687690-4 julitac VGG19_mixed MO 1 2.38/2.40/2.19 248.40 897.64 0.52 0.67 222972 0.0000 0.1 0.0 257.04 /257.04 1.410 96%/51%
5687690-3 julitac VGG19 MO 1 2.38/2.40/2.19 261.37 907.44 3.21 0.61 237176 0.0000 0.1 0.0 267.94 /267.94 1.410 96%/59%

5687690-2 julitac ResNet50_disable MO 1 2.38/2.40/2.19 302.42 920.38 4.22 0.65 278338 0.0000 0.1 0.0 279.54 /279.54 1.410 94%/43%
5687690-1 julitac ResNet50_mixed MO 1 2.38/2.40/2.19 149.26 873.35 0.80 0.66 130356 0.0000 0.2 0.0 233.60 /233.60 1.403 84%/50%
5687690-0 julitac ResNet50 MO 1 2.38/2.40/2.19 196.33 904.09 0.62 0.65 177504 0.0000 0.2 0.0 261.45 /261.45 1.372 87%/70%

29

ISC2024 EAR tutorial

EACCT metrics

● CPU Bound phases
○ Very low CPI , Cycles per instruction, (less than 0.5)
○ Low Memory bandwidth (depends on the architecture)
○ Percentage of MPI influences the CPI (MPI waitings are implemented with busy waiting,

reduces the CPI)
○ High Gflops
○ Scale linearly with CPU frequency. Not too much opportunities for energy savings

● Memory bound phases
○ Medium/High CPI (CPU has to wait for data → increases cycles per instructions)
○ High Memory bandwidth
○ Medium/High Gflops
○ Can take profit of reducing the CPU frequency. Do not scale linearly with CPU

frequency

30

Job Energy Efficiency metric: CPU jobs

● PUE is the ratio of the total amount of power used by a computer data center
facility to the power delivered to computing equipment
○ It’s not a job metric!!

● Being energy efficient is not consuming less power, is doing an optimal utilization
of the power we consume

● For CPU HPC applications, a traditional metric could be the GFLOPS/Watt
○ GFlops characterize the CPU activity
○ Watts the power consumption

● Not valid for
○ Data intensive jobs
○ Non-CPU intensive jobs

31

Job Energy Efficiency metric: GPU jobs

● GPU metrics reported by default (per-GPU)
○ GPU utilization
○ GPU memory utilization
○ GPU frequency
○ GPU power consumption

● GPU Utilization is not representative enough of the GPU activity
○ NVIDIA GPUs provides more metrics, but many of them are ratios (0…1), for example

the FP activity
○ Any action on the GPU increases the GPU utilization

32

ISC2024 EAR tutorial

EACCT metrics: what else can be
observed?

● Are nodes homogeneous ? Same signatures in all the nodes (-l)
● Are there phases, is it constant? Are runtime signatures the same? (-r)
● How much time my application is in MPI calls??
● GPU utilization
● Impact on power and performance of changing job configuration

○ Example: Problem with GPU utilization in GROMACS-GPU

[julitac@int3 ~]$ eacct -j 1387089
JOB-STEP USER APPLICATION POLICY NODES AVG/DEF/IMC(GHz) TIME(s) POWER(W) GBS CPI ENERGY(J) GFLOPS/W IO(MBs) MPI% G-POW
(T/U) G-FREQ G-UTIL(G/MEM)
1387089-sb julitac rfm_GROMACS_GPU_ NP 1 2.35/2.40/--- 6634.00 879.52 --- --- 5834703 --- --- --- --- --- ---
1387089-2 julitac rfm_GROMACS_GPU_ MT 1 2.35/2.20/2.02 2886.16 803.91 24.39 0.37 2320201 0.0091 0.1 71.0 333.42/333.42 1.409 10%/0%
1387089-1 julitac rfm_GROMACS_GPU_ ME 1 2.35/2.40/2.10 2880.70 847.76 37.46 0.38 2442131 0.0129 0.1 68.1 359.00/359.00 1.409 14%/0%
1387089-0 julitac rfm_GROMACS_GPU_ MO 1 2.38/2.40/2.19 833.64 1260.21 152.87 0.56 1050561 0.0425 0.4 26.4 650.88/650.88 1.409 73%/0%

33

Energy optimization

34

Static vs Dynamic energy optimization

● Optimal CPU/Memory/GPU depends on the application, input data, architecture,
number of nodes etc etc

● However, you can be interested in applying DVFS in specific case
● With EAR is easy to ask for CPU frequencies
● EAR offers in some architectures more CPU frequencies than available from the

OS
● The enode_info command reports the EAR technical specification for the

computational node

35

Get Node info

Prepare script

Submit

Get data

Analyze

Static vs Dynamic energy optimization

36

Get Node info

Prepare script

Submit

Get data

Analyze

Prepare script Submit Be efficient!

Static optimization loop

Dynamic optimization

37

$EAR_INSTALL_PATH/bin/tools/enode_info --cpu
EAR CPU info in node tcn2
EAR CPU info Topology: cpu_count : 128
core_count : 128
socket_count : 2
….. // CPU details
EAR CPU info load
EAR CPU info API: EARD
EAR CPU info num devices:128
EAR CPU info list of CPU frequencies
PS0: id0, 2600000 KHz
PS1: id1, 2500000 KHz
PS2: id2, 2400000 KHz
PS3: id3, 2300000 KHz
PS4: id4, 2200000 KHz
PS5: id5, 2100000 KHz
PS6: id6, 2000000 KHz
PS7: id7, 1900000 KHz
PS8: id8, 1800000 KHz
PS9: id9, 1700000 KHz
PS10: id10, 1600000 KHz
PS11: id11, 1500000 KHz
EAR CPU info pstate nominal is 0, CPU freq = 2600000 KHz
EAR CPU info governor CPU[0] = conservative
….
EAR CPU info governor CPU[127] = conservative
EAR CPU info curr CPUF[0] = 2601000
..
EAR CPU info curr CPUF[127] = 2601000

#!/bin/bash
#SBATCH --job-name=sp
#SBATCH --ntasks=128
#SBATCH --ear=on
module purge
module load 2022
module load iimpi/2022a

export OMP_NUM_THREADS=1
export EARL_REPORT_LOOPS=1
srun --ear-policy=monitoring --ear-cpufreq=2500000 ./sp-mz.D.128
srun --ear-policy=monitoring --ear-cpufreq=2400000 ./sp-mz.D.128
srun --ear-policy=monitoring --ear-cpufreq=2300000 ./sp-mz.D.128
srun --ear-policy=monitoring --ear-cpufreq=2200000 ./sp-mz.D.128

Energy policies: Computational phases

● Monitoring:
○ Application analysis
○ Static energy optimization (Manual CPU/Memory/GPU freq selection)

● Minimize energy to solution (min_energy)
○ EAR reduces CPU frequency to save energy with a maximum time penalty
○ Applications start at default frequency and CPU frequency is (potentially) reduced
○ default frequency = nominal frequency
○ Memory frequency selected with a linear search

● Minimize time to solution (min_time)
○ EAR increases CPU frequency to minimize time for “frequency efficient” codes
○ Applications that scale well with CPU frequency
○ Default frequency = lower than nominal frequency
○ Application will never run at CPU frequency below the default CPU frequency
○ Memory frequency selected with a linear search

38

Common to both policies

● GPU optimization when GPU idleness.
● IO phases detected.
● Turbo can be enabled if configured and CPU bound application.
● Intra-node Load balance .

● GPU frequency selection:
○ Maximum if GPU utilization > 0
○ Minimum if GPU utilization == 0 (power consumption is lower.)

● Version 5.0 will include GPU optimization

39

40

KERNEL SP-MZ.D : ROME (Min_energy vs Nominal): Must be the same node for comparison

[julitac@int5]$ eacct -j 4896747.0
 JOB-STEP USER APPLI POLICY NODES AVG/DEF/MEM TIME(s) POWER(W) GBS CPI ENERGY(J) GFLOPS/W IO(MBs) MPI% G-POW (T/U)
G-FREQ G-UTIL(G/MEM)
4896747-0 julitac sp ME 1 2.16/2.60/1.47 336.75 457.62 197.79 0.69 154102 2.9608 0.0 12.0 0.00/--- ---

[julitac@int5]$ eacct -j 4896738.0
 JOB-STEP USER APPLI POLICY NODES AVG/DEF/MEM TIME(s) POWER(W) GBS CPI ENERGY(J) GFLOPS/W IO(MBs) MPI% G-POW (T/U)
G-FREQ G-UTIL(G/MEM)
4896738-0 julitac sp MO 1 2.57/2.60/1.47 329.67 519.01 202.73 0.79 171103 2.6666 0.0 11.0 0.00/--- ---

sbatch --ntasks=192 --partition=rome sp.D.sh
sbatch --ntasks=192 --partition=rome –ear-policy=min_energy sp.D.sh

EAR Data visualization

● https://github.com/sara-nl/ISC-2024-EAR-tutorial/blob/main/tutorials/visualization/
README.md

● ear-job-analytics: EAR tool to create images with runtime data visualization and
paraver traces

● Grafana
○ Running at DC and executing SQL queries (more powerful, but depends on Data

Center permissions)
○ Local installation:

■ Grafana server installed and running locally
■ Data gathered in CSV format with eacct and using CSV plugin
■ Not mandatory but more information if loops are in DB
■ Can be use also without EAR DB: –ear-user-db=filename

●

41

https://github.com/sara-nl/ISC-2024-EAR-tutorial/blob/main/tutorials/visualization/README.md
https://github.com/sara-nl/ISC-2024-EAR-tutorial/blob/main/tutorials/visualization/README.md

42

Example:
Palabos: Strong Scaling Benchmark

• Per-node, Per-iteration ”traces”

• CPI (Cycles per instruction)
• Main memory BW (GB/s)
• MPI% (percentage spent in MPI calls)
• I/O (Disk)
• Node Power

Thanks!

Julita Corbalan julita.corbalan@bsc.es

 Lluís Alonso (lluis.alonso@bsc.es)

43

mailto:julita.corbalan@bsc.es
mailto:lluis.alonso@bsc.es

