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A New Computing Model - Quantum Computing

NEW COMPUTING MODEL POTENTIAL USE CASES REQUIRES QUBITS SCALE

TO DOUBLE EVERY YEAR

Fault-Tolerant Quantum
Computing Speedups Threshold
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Far Term Applications

Rigorous proofs of advantage, many “perfect” qubits required

SHOR’S ALGORITHM

* Prime factorization of numbers - encryption
* Exponential speed-up

GROVER’S ALGORITHM

Unstructured search

 Quadratic speed-up

Init Oracle Amplification
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Near Term Application Potential

Applications with near term potential but quantum advantage is an open question

CHEMISTRY, MATERIALS SCIENCE, DRUG
DISCOVERY

Variational Quantum Eigensolver

FINANCE, LOGISTICS, OPTIMIZATIONS
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Potential Near Term Quantum Computing Use-Cases

Applications with near term potential but quantum advantage is an open question

Quantum Machine Learning Quantum Chemistry Combinatorial Optimization
Quantum Generative Models Variational Quantum Eigensolver for carbon capture QAOA tor resource allocation
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Quantum Computing Basic Operations
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Measurement: wavefunction collapse
- measure only one state
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Qubit

(Bloch Sphere)
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Quantum Computing Basic Operations

Superposition and Measurement

Qubit

(Bloch Sphere)
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Quantum Circuits

Classical Circuit Quantum Circuit
single-qubit gate measurment
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two-qubit gate
Hadamard Gate: CNOT Gate:
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Quantum Entanglement

Hadamard Gate: CNOT Gate:
Had|0) = |0)+ | 1) CNOT|10) = |11)
Had|1) = [0) - |1) CNOT|11) = |10)
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Leading Qubit Technologies

The challenge of engineering quantum hardware is to manipulate physical systems to implement
superposition and entanglement (for a sufficiently long time)

SUPERCONDUCTORS ION TRAPS

* Principle: Superconducting circuits based on * Principle: lons in a vacuum, trapped &
Josephson junctions rotated by lasers

* Strengths: Gate error rates <1% * Strengths: Long coherence time,

all-to-all connectivit
* Weaknesses: Qubits only hold state ~100ps, y

fixed connectivity, cross-talk * Weaknesses: Scalability, slow read-out

SILICON PHOTONICS

* Principle: Store qubits as polarity of

dWs single photons, photonics for gates
« Strengths: Scalability, manufacturable
intel * Weaknesses: Photon sources/detectors,

error rates, non-std computation model

Other approaches: Neutral Atoms, Quantum Dots, Topological Qubit, Diamond Vacancies

Practical QC is expected to require scaling these technologies to millions of qubits, error correction and new quantum algorithm

12 <A NVIDIA.




Quantum Computing Research Roadmap

Fault-Tolerant QC Era:

1000:1-10000:1 redundancy for error-corrected logical qubits.
[Fowler 2012][Reiher 2016]

Exponential speedups on a limited set of applications with
hundreds to thousands of logical qubits (millions of physical qubits).

Fault-Tolerant Quantum
10,000,000 ' Computing Speedups Threshold .-
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1,000,000 Noisy Intermediate Scale Quantum (NISQ) Era:

2 100,008 Quantum gates are noisy, errors accumulate. Qubits lose coherence.

g 10,000 QC hardware will mitigate errors by using tens to hundreds of redundant
3 1,000 physical qubits per logical qubit to mitigate errors.

£ ’

100

10

Quantum Supremacy Threshold: Experimental confirmation of quantum speedup on

1 - a well-defined (not necessarily useful) problem.
2010 2015 2020 2025 2030 2035 2040

Qubits and quantum gates are very noisy, hardware not very usable.
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Quantum Computing Simulat




GPU-based Supercomputing in the Quantum Computing Ecosystem

Researching the quantum computer of tomorrow with the supercomputers of today

QUANTUM CIRCUIT SIMULATION HYBRID CLASSICAL/QUANTUM APPLICATIONS
Critical tool for answering today’s most pressing questions Impactful QC applications (e.g. simulating quantum materials and systems)
in Quantum Information Science (QIS): will require classical supercomputers with quantum co-processors
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What quantum algorithms are most promising for near-term or long-term
quantum advantage?

 How can we integrate and take advantage of classical HPC to accelerate
hybrid classical/quantum workloads?

 What are the requirements (number of qubits and error rates) to realize

quantum advantage?  How can we allow domain scientists to easily test coprogramming of QPUs

with classical HPC systems?

What quantum processor architectures are best suited to realize valuable

quantum applications?  (Can we take advantage of GPU acceleration for circuit synthesis, classical

optimization, and error correction decoding?
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Two Leading Quantum Circuit Simulation Approaches
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State vector simulation Tensor networks

“Gate-based emulation of a quantum computer” “Only simulate the states you need”

Maintain full 2" qubit vector state in memory Uses tensor network contractions to dramatically

. L reduce memory for simulating circuits
Update all states every timestep, probabilistically sample n , ,
of the states for measurement Can simulate 100s or 1000s of qubits for many

practical quantum circuits
Memory capacity & time grow exponentially w/ # of qubits -

practical limit around 50 qubits on a supercomputer

Can model either ideal or noisy qubits

GPUs are a great fit for either approach

Source of Tensor Network image: Quimb - quimb.readthedocs.io 16 <INVIDIA I


https://quimb.readthedocs.io/en/latest/index.html

State Vector vs Tensor Network for Quantum Circuit Simulation

R&D for the computers of tomorrow requires powerful simulations today
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Introducing cuQuantum

* cuQuantum is an SDK of optimized libraries and tools
for accelerating Quantum Computing workflows

* cuQuantum is not a:
« Quantum Computer
* Quantum Computing Framework

* Quantum Circuit Simulator
Quantum Circuit Simulators
(eg Qsim, Qiskit-aer)
cuStateVec cuTensorNet

18 <A NVIDIA. I




Introducing cuQuantum

* cuQuantum is a platform for Quantum Computing
research

* Accelerate Quantum Circuit Simulators on GPUs
» Simulate ideal or noisy qubits

* Enable algorithms research with scale and performance
not possible on quantum hardware or on simulators today

- GA availability, integrated with Quantum Circuit Simulators
- Google Cirg (eg Qsim, Qiskit-aer)
» |IBM Qiskit
- Xanadu PennylLane

+ DGX Quantum Appliance container available on NGC:

QPU
catalog.ngc.nvidia.com/orgs/nvidia/containers/cuguantum-appliance cuStateVec cuTensorNet

 Full documentation at docs.nvidia.com/cuda/cuguantum
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https://catalog.ngc.nvidia.com/orgs/nvidia/containers/cuquantum-appliance
https://docs.nvidia.com/cuda/cuquantum/
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cuQuantum Performance

Enabling speedups for a range of use cases and users

.t 7
Spasqar Lo W oo
' PENNYLANE

(ALl

Amazon Braket

Faster Quantum Algorithm for Physics-ML New PennylLane Integration via AWS Braket Orquestra Platform Integration

100X 900X 100X

Faster Time-to-solution Faster Time-to-solution Faster Time-to-solution

24X 3.5X 1.5X

More Circuit Depth Lower Costs More Qubits
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cuStateVec - Single GPU Performance
Preliminary performance of Cirg/Qsim + cuStateVec on NVIDIA A100

A100 80G vs 64 core CPU VQE speed-up relative to single CPU
20 20
18 —4=QFT 18
16 -@-Shor’s 16
--Sycamore Supremacy Circuit (m=14)
14 , 14
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# of qubits LiH (8 qubits)  H20 (10 qubits) CH4 (14 qubits) C2H4 (22 qubits)
Benchmarks run using cirq/qgsim with modifications to integrate cuStateVec VQE benchmarks have all orbitals and results were measured for the energy
CPUs used were AMD EPYC 7742 with 64 cores function evaluation

QFT circuit with 32 qubits and depth 63
Shor’s circuit with 30 qubit and depth 15560 (integer factorized: 65)
Sycamore supremacy circuit m=14 with 7480 gates
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cuQuantum Support for PennyLane

» Leading open-source framework for guantum . »

] ] i ] Hia;, 35.71) 9 —— Riai.35.71) 9 ._..,
machine learning and quantum chemistry, built by —— 7SRl 1Rfs
- Train Quantum Computers in the same way as Neural v e B S SR B
Networks ) ‘
* New simulator lightning.gpu with cuQuantum
support, available now: ‘ s i
| | | 1 © CPU. Threads=1 @ CPU, Threads=1
e xanadu.ai/products/lightning :. CPU, Threads=32 CPU, Threads=32 o
: : GPU GPU
» 10x speedup for QML circuits o
\ O
O e @
'—'
O
21 23 2% 27

WIres
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https://xanadu.ai/products/lightning/

DGX cuQuantum Appliance

Multi-GPU container with cuQuantum + integrated Cirg/Qsim

* Full Quantum Simulation stack with a Multi-GPU Speedup of Cirq with cuQuantum on DGX A100
Cirg/Qsim frontend

« other frontends will be available in future
releases

300

- World class performance on key quantum
algorithms T
200 —++

» Available now on NGC: 1
catalog.ngc.nvidia.com/orgs/nvidia/containers/

cuguantum-appliance

- __ 217
N . T
@ Cqu 111
S zz . “
o1 mon 18

1 GPU 2 GPU 4 GPU 8 GPU

~ | Supremacy (m=14, 32Q) Shor (30Q) [ QFT (32Q)

Speed-up
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* For many practical guantum circuits, tensor
networks enable scaling of simulation to 100s or

: A B C D
1000s of qubits . — —
n
« cuTensorNet provides APIs to: n| X n| X

» convert a circuit written in Cirg or Qiskit to a \ /N /
tensor network ( F=AxB, 212 G=CxD, 2n?

 calculate an optimal path for the contraction X
ptimal p B _

» hyper-optimization is used to find contraction path
with lowest total cost (eg FLOPS or time estimate)

» slicing is introduced to create parallelism or reduce

maximum intermediate tensor sizes

 calculate an execution plan and execute the TN

contraction
 leverages cuTENSOR heuristics

» Checkout technical blogpost on NVIDIA Devblog:

culensorNet

A library to accelerate Tensor Network based Quantum Circuit simulation

\.

"H=FxG, 2n3 E

<

‘\

J

Cost: 2n3+6n2

T=HxE, 2n?

developer.nvidia.com/blog/scaling-quantum-circuit-

simulation-with-cutensornet

Source of Tensor Network image: Quimb - quimb.readthedocs.io

Naive contraction: T= (A,B) (C,D) (F,G) (H,E)

E A B C D E

ge— D N — \
n n

X nI nl X X nI X X nI
\ J y

A  (G=BxC, 2n . F=DxE 2n

X I I X ] []
. y

Cost: 6n+2

Optimal contraction: T= (D,E) (B,C) (F,G) (A,H)

N)2
TN
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https://developer.nvidia.com/blog/scaling-quantum-circuit-simulation-with-cutensornet/
https://quimb.readthedocs.io/en/latest/index.html

cuTensorNet Optimization & Flowchart

NetworkOptions |

Network Definition

Simplification
(deferred rank)

PathFinderOptions Path Finder

(divisive algorithm) Autotune

(optional)
Hyperoptimization

Slicer Contract
Reconfiguration

SlicerOptions

ReconfigOptions

[ OptimizerOptions )
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Tensor Network Simplification

Simplification aims to reduce the computational cost of contracting the tensor network through preprocessing.

cuTensorNet implements deferred rank-simplification, which identifies those pairwise contractions that do not

increase the rank (number of dimensions) of the resulting tensor and sequences them to be performed first as a path
prefix. This essentially creates a smaller network for the divisive algorithm as well as for reconfiguration to process.
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cuTensorNet Path Finder (Divisive Algorithm)

The tensor network is represented as a graph, with tensors as the vertices and modes that are contracted as the

edges.
m. N

h - - ) -‘
A e i
i
5
1
i,
F -._\_..
4 T

The graph is partitioned into the specified number of partitions (2 shown) recursively until the size of each partition is
less than or equal to the specified cutoff size (3 shown). Exhaustive search or an agglomerative algorithm is used to
find the contraction order within as well as between partitions, from which the contraction order for the complete
tensor network is built.

vl § Level 1

e Level 2

The colors map to the partitioning level, and the shades at each level distinguish different partitions. N
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Tensor Network Slicing for Parallelism &
Minimizing Memory Requirements

Slicing is a technique to select a subset of edges from a tensor network (corresponding to mode labels) for explicit
summation.

A sliced network:

1. results in lower memory requirements (often with some computational overhead), and
2. allows for parallel execution.

cuTensorNet implements dynamic slicing, which interleaves slicing with reconfiguration.

30 NVIDIA.


https://github.com/jcmgray/cotengra

Tensor Network Reconfiguration

The divisive algorithm computes a contraction path, which is a linearization of the contraction tree. The basic idea
behind reconfiguration is to reduce the total contraction cost by reducing the contraction cost of portions (subtrees)
of the contraction tree. The number of leaves in the subtree is typically chosen to be small enough so that the optimal
algorithm can be used, and multiple iterations of reconfiguration are performed on different subtrees.

As mentioned earlier, if slicing is active cuTensorNet interleaves reconfiguration with slicing to keep the contraction

cost low.
/\ reconfigure | /\
| ‘ subtree ('” A

subtree(’ _ subtree

:' w— > k
rOOt oo Optlrna“y V’ rOOt -
subtree intermediates (delete) \ new intermediates \
/\ | /\ |

subtree leaves subtree leaves

AN NANN A A AN D

original tensors (real tree leaves)

original tensors (real tree leaves)
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https://github.com/jcmgray/cotengra

culensorNet

Tensor Network path optimization performance

Quality of Path
Time to find a contraction path (sec/sample)
1.0E+32 500
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18 40
1.0E+00 0 1.3 1.5 — B
M12 (210) M14 (144) M20 (379) m 10 simplified 168 tensors m20 simplified 382 tensors m20 non-simplified 3316 tensors
mopt_einsum “auto”  mopt_einsum “auto-hg” = Cotengsra  mcuTensorNet (otengra W cuTensoriet

cuTensorNet achieves SotA pathfinding results dramatically faster, and does better with more complex networks

[1] Gray & Kourtis, Hyper-optimized tensor network contraction, 202 1. URL: quantum-journal.org/papers/q-2021-03-15-410/pdf
[2] opt-einsum, URL: pypi.org/project/opt-einsum
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https://quantum-journal.org/papers/q-2021-03-15-410/pdf/
https://pypi.org/project/opt-einsum/

The MaxCut Problem

1.0 — 19Q
Rigetti QVM
0.8 —— Empincal Random Bitstring Sampling
' —— Exact Random Bitstring Sampling
LL
O 06
s
EL 0.4
@
0.2
0.0
10 20 30 40 50
step
- NP-Complete combinatorial optimization  Early target for hybrid variational quantum
problem algorithms
» Applications include clustering, network * QAOA proposed by Farhi et al: arXiv:1411.4028

design, Statistical Physics, and more . . .
J y - Several HW demonstrations, including on

Rigetti 19Q chipin 2017

Source of images: Xanadu Inc. - pennylane.ai/gml/demos/tutorial_gaoa_maxcut.html (left) | Otterbach et al, Unsupervised Machine Learning on a Hybrid Quantum Computer, arXiv:1712.05771 33  <ANVIDIA. I


https://pennylane.ai/qml/demos/tutorial_qaoa_maxcut.html

Simulating MaxCut using Tensor Networks

* Tensor Networks are a natural fit for MaxCut

 Fried et. al. (2017) arxiv.org/abs/1709.03636
« Huang et. al (2019) arxiv.org/abs/1909.02559
 Lykov et. al. (2020) arxiv.org/abs/2012.02430

n
| D wioio; = ) wifoioi+) wifoiof - Luse
- Patti et. al.(2021): NVIDIA Research proposes a novel Jcy s §oi
variational quantum algorithm
- Based on 1D tensor ring representation 10 Mean(C)/MaxCut(G)

- Multibasis encoding

- Able to find accurate solution for 512 vertices (256 qubits) on
a single GPU

* Paper: arxiv.org/abs/2106.13304
e Code: github.com/tensorly/quantum

0 50 100
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https://arxiv.org/abs/1709.03636
https://arxiv.org/abs/1909.02559
https://arxiv.org/abs/2012.02430
https://arxiv.org/abs/2106.13304
https://github.com/tensorly/quantum

N F A

IDIA DGX Super

V OD

»

Scaling to a GPU Supercomputer:

Vertex Count 10,000

NVIDIA's Selene DGX SuperPOD based supercomputer

3,375
» Using NVIDIA's Selene supercomputer
- Solved a 3,375 vertex problem (1,688 qubits)
with 97% accuracy
+ Solved a 10,000 vertex problem (5,000 qubits)
with 93% accuracy 512
210
———
Previous largest Single GPU Supercomputer Supercomputer
problem, Theta 97% Accuracy 97% Accuracy 93% Accuracy

Supercomputer [1]

[1] Danylo Lykov et al, Tensor Network Quantum Simulator With Step-Dependent Parallelization, 2020
arxiv.org/abs/2012.02430
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https://arxiv.org/abs/2012.02430

Summary

Quantum circuit simulation is an approach to conduct
quantum computation with classical computer processors

like CPUs and GPUs

cuQuantum makes it easy for anyone with NVIDIA
hardware to accelerate and scale their simulations more
than previously possible

An expanding ecosystem is using cuQuantum to enable
quantum research

Get stated with cuQuantum today by pulling our container
from NGC, downloading the SDK from our DevZone, via
pip or conda install, or through other frameworks
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JOIN THE COMMUNITY THAT'S CHANGING THE WORLD

Get exclusive access to an extensive library of NVIDIA software, spanning all of NVIDIA’s technology platforms.

Save time with ready-to-run, GPU-optimized software, model scripts, and containerized apps from the NVIDIA NGC" catalog.

Participate in early access programs where you can be one of the first to experience the latest NVIDIA technology.

Take advantage of research papers, technical documentation, developer blogs, and industry-specific resources.

TRAINING Choose from a broad catalog of training options through the NVIDIA Deep Learning Institute (DLI).

Get unlimited access to NVIDIA On-Demand, the home for NVIDIA resources from GTCs and other leading industry events.

Network with like-minded developers, engage with GPU experts, and contribute to discussions in the developer forums.
COMMUNITY Attend exclusive meetups, GPU hackathons, and events.

Connect with NVIDIA experts through developer-focused webinars and Instructor-led workshops.

Join the Free Program developer.nvidia.com/join



https://developer.nvidia.com/developer-program?ncid=ref-dev-438940#cid=dev02_ref-dev_en-eu
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Thank you!
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