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Notices and Disclaimers

= Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration.

= No product or component can be absolutely secure.

= Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete
information about performance and benchmark results, visit http://www.intel.com/benchmarks .

= Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit http://www.intel.com/benchmarks .

» Intel® Advanced Vector Extensions (Intel® AVX) provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause
a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies
depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

= Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

= Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

= Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are
accurate.

= © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
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Al Software Stack for Intel® XPUs

Intel offers a Robust Software Stack to Maximize Performance of Diverse Workloads

Engineer Data Create machine learning & deep learning models

Data Analytics at Scale Optimized Frameworks and Middleware Optimize and Deploy Models

=i MODIN g SciPy W TensorFlow O PyTorch @X net Automate Automate Write Once

) Model Tuning Low-Precision Depoly
1 +T . I P AutoML Optimization A here
II:I pcndas N.== NumPy .ha o3/ PaddiePaddie € ONNX P nyw

SigOpt INC OpenVINO
ami " .
omni-sci ?Numba JJYGrBOOSE : CatBoost . LIghtGBM Toolkit

With Intel Optimizations

:!p[ oneDAL oneDNN oneCCL oneMKL

Container Repository MLOps Developer Sandbox
ONECONTAINER CNVRG.IO

DEVCLOUD

] i D &
[ k5=l Laptop/Workstation Server/Cloud 25 [[ly Edoe
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Intel® oneAPI Al Analytics Toolkit

Intel” oneAPI Al Analytics Toolkit
» Accelerates end-to-end Machine
Learning and Data Analytics pipelines I Deep Learning I Machine learning I

with frameworks and libraries optimized Intel® Extension for

Intel® Optimization St deer

for Intel® architectures for TensorFlow
Intel® optimizations for

Intel® Optimization for XGBoost
PyTorch & IPEX

Who Uses It? for Intel® Architecture Data Analytics

Intel® Distribution of Modin

= Data scientists, Al Researchers, Machine Intel® Neural Compressor
and Deep Learning developers, Al
application developers

OmniSci Backend

Core Python

Intel-optimized

intel.com/oneAPI-AlKit

intel. s
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Introduction to Python* Performance

» The layers of quantitative

Python*

The Python* language is interpreted and has
many type checks to make it flexible

Each level has various tradeoffs; NumPy*
value proposition is immediately seen

For best performance, escaping the Python*

layer early is best method

-

Python*

NumPy*

b=

!

Enforces Global Interpreter
Lock (GIL)

Pure Python is single-threaded,;
has abstraction overheads and
no advanced types.

 Gets around the GIL

(multi-thread and multi-core)

* BLAS API can be the

bottleneck

*Basic Linear Algebra Subprograms (BLAS)
[CBLAS]

* Gets around BLAS API
bottleneck

* Much stricter typing
* Fastest performance level

* Dispatches to hardware
vectorization

intel.



Accelerating Machine Learning with Intel® oneAPI Analytics Toolkit

Intel® oneAPI Data Acceleration Library
(Intel®oneDAL)

=

intel.



Intel®oneAPI Data Analytics Library (oneDAL)

Framework Interfaces & Software Stack

dmic
5100" ‘ML  XGBoost
interop integrated planned integrated*

¢ Python Binding Java Binding

C- oneDAL Interface (part of oneAPI spec)

Algorithms (batch, streaming and distributed)

CPU Backend GPU Backend
oneCCL CPU Kernels GPU Kernels

DPC++ Runtime

Level O

API designed to be hardware and vendor independent
Relies on Data Parallel C++ (DPC++) and C++17

intel.
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Intel® oneAPI Data Analytics Library (oneDAL) algorithms
Data Transformation and Analysis

Basic statistics

Correlation and

Dimensionality

Outlier detection

Matrix factorizations

for datasets dependence reduction
— Basic — Cosi — SVD .
statistics -05IN€ PCA Univariate
_ distance
~— J‘J
_ QR
— | Quantiles Cg_rr;alation — Association rule ~ | Multivariate
istance Lo .
Cholesky mining (Apriori)
Variance- -
- Order Covariance .
statistics i tSVD Optimization solvers Math functions
- (SGD, AdaGrad, IBFGS, CD) (exp, log,...)
C] Algorithms supporting batch processing Intel GPU (Gen 9 & Gen12) & dGPU

Algorithms supporting batch processing

[j Algorithms supporting batch, online and/or distributed processing

intel.



Intel® oneAPI Data Analytics Library(oneDAL) Algorithms

Machine Learning

Regression

Supervised
learning

Classification

Linear
Regression
Ridge
Regression
SVR, NuSVR LASSO
Decision Tree Elastic Net AdaBoost
- Brown/Logit
Decision Forest _
Boosting
Gradient Boosting Naive Bayes
Logistic

C] Algorithms supporting Intel GPU (Gen 9 & Gen12) & dGPU

D Algorithms supporting batch processing

[j Algorithms supporting batch and distributed processing

 —

Regression

kNN

.

J/

NuSVC

Unsupervised /
learning
\

Collaborative

filtering

DBSCAN

A

K-Means
Clustering

EM for GMM

Alternating
Least
Squares

Apriori

intel.
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What makes oneDAL faster?

Performance

@

®
® ®

®

fo— ———— — S S N ) — =0
C++ baseline Optimized Math routines Threading Advanced Vectorization Memory optimizations Support of the newest Scaling-out opportunities

The best performance on Intel Architectures
with oneMKL vs. less performance OS
BLAS/LAPACK libs

onDAL targets to many-core systems to achieve
the best scalability on Intel® Xeon, other libs
mostly target to client versions with small
amount of cores

==@==QOther ML libraries e==@==DAAL

oneDAL uses the latest available vector-instructions on
each architecture, enables them by compiler options,
intrinsics. Usually other ML libs build application without
vector-instructions support or sse4.2 only.

oneDAL'’s uses the most efficient memory optimization
practices: minimally access memory, cache access
optimizations, SW memory prefetching. Usually Other ML
libs don't make low-level optimizations.

arhitecrures

oneDAL enables new instruction sets
and other HW features even before
official HW launch. Usually other ML
libs do this with long delay.

oneDAL provides distributed
algorithms which scale on many
nodes

intel. 11



Intel® Extension for Scikit-learn

4 N\
Common Scikit-learn Scikit-learn with Intel CPU opts
( o i Same Code,
from sklearnex import patch_sklearn Same BehaVIOr
patch_sklearn()
from sklearn.svm import SVC from sklearn.svm import SVC m
X, Y = get dataset() X, Y = get_dataset() « Scikit-learn, not scikit-learn-like
clf = svC().fit(X, y) clf = SvC().fit(X, y) « Scikit-learn conformance
res = clf.predict(X) res = clf.predict(X) (mathematical equivalence)
L ) . ) defined by Scikit-learn
_ Consortium,
Scikit-learn mainline Intel® extension for sklearn continuously vetted by public C|
\_ J
* Directly from the script: e Through global patching to enable patching for your scikit-learn installation for all further runs:
from sklearnex import patch_sklearn python sklearnex.glob patch sklearn

patch_sklearn()

intel. 12



Intel® Extension for scikit-learn (Inference)

Speedups of Intel® Extension for Scikit-learn over the original Scikit-
learn (inference) - run by Anaconda

1000.00
159.15
12880 7 144.51
85.89
100.00 62.68
46.42
25.58 27.05
1000 688 6.68 7.43
411 5.21
. 381
2.60 3.20
2.04 I I 199 449 I 1.99
o [ in ikl
“ O O < < C & Q ) Q 53 < (4
S ¥ $F 2§ ?'d‘ o P GV ¥ W g % q\-:‘ »
¥ e AR o & A N P X S ™
D 4 ¥ & B b A M + v » > o8 o Sl
i SR . S A - » & + + I v . S ¢
ST I s P F N e F O F
n o » N "b O g Y v v 2 O Ry © \%
'§\ Y o e \@ \&‘ i % o 6\‘ &\ 0y é + é- é 6
& Ff T F S & @‘9 ¢ & & & ¢
¥ \x‘b ¥ " g & g N ® & & @7 O o2® » & © >
O > & @ = & L & % P & & & 2 R &
‘_e N \\“ & b * < <& \b% > (#) o "
& @ & & &S &
- & S
& & M M
N

intel.

13



Intel® Extension for scikit-learn (Training)

Speedups of Intel® Extension for Scikit-learn over the original Scikit-
learn (training) - run by Anaconda
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Competitor's Relative Performance vs. Intel® Distribution for Python* (IDP)

with Scikit-learn™ from the Intel® Al Analytics Toolkit
(Intel=1)
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m IDP Scikit-learn (AMD Rome 7742) m RAPIDS cuML v.15 (Nvidia VV100)

Testing Date: Performance results are based on testing by Intel as of October 23,2020 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: Intel® oneDAL betalO, Scikit-learn 0.231, Intel® Distribution for Python 3.7, Intel® Al Analytics Toolkit 20211, Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz, 2 sockets, 28 cores per socket, microcode:
0Ox40030083, total available memory 376 GB, 12X32GB modules, DDR4. AMD Configuration: AMD Rome 7742 @2.25 GHz, 2 sockets, 64 cores per socket, microcode: 0x8301038, total available memory 512 GB, 16X32GB modules, DDR4, Intel® oneDAL betalO,

Scikit-learn 0.231, Intel® Distribution for Python 3.7. NVIDIA Configuration: Nvidia Tesla VVI00-16Gb, total available memory 376 GB, 12X32GB modules, DDR4, Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz, 2 sockets, 28 cores per socket, microcode:
0x5003003, cuDF 0.15, cuML 0.15, CUDA 10.2.89, driver 440.33.01, Operation System: CentOS Linux 7 (Core), Linux 4.19.36 kernel.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

L]
Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/Performancelndex. Your costs and results may vary. In te|®
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http://www.intel.com/PerformanceIndex

oneAPI| Data Analytics Library (oneDAL)

Scikit-Learn* APl Compatible

Use directly for

 Scaling to multiple nodes

» Streaming data

* Non-homogeneous
dataframes

 Gradient Boosting (for e.g)

intel. 16



XGBOOSt and nghtGBM PredICtIOn Daal-ﬂp".’(_-mwers;ingDP;:;iréﬂance on Gradient
Acceleration with Daal4Py |

Higher is better

1 XGBoost 1.2

Speedup

» Custom-trained XGBoost* and LightGBM* Models
utilize Gradient Boosting Tree (GBT) from Daal4Py i
library for performance on CPUs

»= No accuracy loss; 23x performance boost by simple
model conversion into daaldpy GBT:

# Train common XGBoost model as usual
xgb_model = xgb.train(params, X_train)

Gradient Boosting Accuracy

import daal4py as d4p

# XGBoost model to DAAL model . Higher is better
daal_model = d4p.get_gbt_model from_xgboost(xgb_model) o

# make fast prediction with DAAL
daal_prediction = d4p.gbt_classification_prediction(...).compute(X_test, daal_model)

Accuracy

» Advantages of daal4py GBT model:

* More efficient model representation in memory oo o No accuracy

|
* AVX-512instruction set usage Lol

 Better L1/L2 caches locality

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. in tel 17
See backup for configuration details. ©


http://www.intel.com/benchmarks

Processing Modes

Batch

Processing

'Dk-:I—JDk;l "Dl.'—> ,._.L' :
Append

R = F(D,,...,.D,)

d4p.kmeans_init(10, method="plusPlusDense")

Distributed
Processing

i v\v

'D

R= F(Rl,..., W)

d4p.kmeans_init(10, method="plusPlusDense",

distributed=“True”)

Online

Processing
Ds D,
:.....l=..... 1 .l =l l.
! l. l. D ’; —; !

SilRi
Sisq = T(S5;,D)
R|+1 = F(Si+1)

d4p.kmeans_init(10, method="plusPlusDense*,

streaming="“True”)

intel.
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Distributed K-Means using daal4dpy

import daal4py as d4p

d4p.daalinit(Q)

data = "kmeans_dense_{}.csv".format(d4p.my_procid())

init = d4p.kmeans_1ni1t(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

intel. 20



oneDAL K-Means Fit, Cores Scaling

(10M samples, 10 features, 100 clusters, 100 iterations, float32)

100
2500.0 23595
90
2000.0 80
70
1500.0 60
1139.1 50
1000.0 40

581.9 30

500.0 306.3 20

452 10
0.0 - [ — — o

1 2 4 8 16 28 56

Number of cores
mmTime,s ——Efficiency (actual),% —Efficiency (ideal), %

Execution time, sec
Parallel efficiency, %

Performance varies by use, configuration, and other factors. Learn more at www.intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

Your costs and results may vary. Intel technologies may require enabled hardware, software, or service activation.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Configuration: Testing by Intel as of 10/23/2020. Intel® oneAPI Data Analytics Library 2021.7 (oneDAL); Intel® Xeon® Platinum 8280LCPU @ 2.70GHz, 2 sockets, 28 cores per socket, T0M samples, 10 features, 100 clusters, 100 iterations, float32.

intel. 21
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Accelerating Machine Learning with Intel® oneAPI Analytics Toolkit

Intel® Distribution of Modin

=
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Current Data Loading & ETL Landscape

After a certain data size, need to change your API to handle more data

100 MB+
of Data

Easx to use, | Easx to scale: |
Increasing data size

difficult to | difficult to use

. Scale I APACHE
|.i| pandas | SPQ <’zz

# import pandas as pd
import modin.pandas as pd

intel. 24



MoO

N

Add Ibis/SQL

= Usable and Scalable &=
memory

{ Pandas } 'ﬂf.'f!f
DataFrame

Dataframe Algebra API
Pyarrow Kernels (WIP) Pandas Kernels

Stabilize internal
APls

OmniSci Dataframe

Decouple execution

Integrate with
OmniSci

Dask

Multipro
cessing

and storage
OmniSci RT

k//////
cpu)(cpu) (#)  .....]

Idle cores

Mvidia

CPU GPU

Intel GPU

memory

Modin
DataFrame

e

‘cpPu | cpu | cpu || cru|

Full utilization

To use Modin, replace the pandas import

To install the Intel Distribution of Maodin, alter the command to include conda forge dependencies:
conda create -n aikit-modin intel-aikit-modin -¢ intel -¢ conda-forge

# import pandas as pd
import modin.pandas as pd

intel.
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Modin

import modin.pandas as pd
import numpy as np
def run_etl():
def cat _converter(x):
if x is "":
return np.int32(e)
else:

return np.int32{int(x, 16))

names = [f"column_{i}" for i in range(48)]
converter= {names[i]: cat converter for i in range(14, 48)}

df = pd.read _csv({'data.csv", delimiter="%t', names=names,
converters=converter)

count_y = df.groupby("column_B")["@"].count()

return df, count y

df, count_ vy = run_etl()}

= Dataset size: 2.4GB

400

350

300

250

Time, s
N
o
o

150

100

50

Execution time Pandas vs. Modin[ray]

340.0729

10.8

speedup

31.2453

B Pandas mH Modin

Intel® Xeon™ Gold 6248 CPU @ 2.50GHz, 2x20 cores

intel.
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NYCTaxi Workload Performance

Pandas vs Modin — Higher is Better

NYCTaxi (20 Million rows) - Performance NYCTaxi (1 Billion rows = 1.6 TB in mem) -
improvement with Modin+Omnisci Performance improvement with
20 Modin+Omnisci — using 3TB Optane
18 100
16 90
14 80
70
g 12 o
© S 60
3 10 D 50
Q g ()]
wn 8— 40
6 30
4 20 I
2 10
Reading Q1 Q2 Q3 Q4 Reading Q1 Q2 Q3 Q4
Pandas m Modin+Omnisci Pandas m Modin+Omnisci

Dataset source: https://github.com/toddwschneider/nyc-taxi-data

Configurations: For 20 million rows: Dual socket Intel(R) Xeon(R) Platinum 8280L CPUs (S2600WFT platform), 28 cores per socket, hyperthreading enabled, turbo mode enabled, NUMA nodes per socket=2, BIOS:
SE5C620.86B.02.01.0013.121520200651, kernel: 5.4.0-65-generic, microcode: 0x4003003, OS: Ubuntu 20.04.1 LTS, CPU governor: performance, transparent huge pages: enabled, System DDR Mem Config: slots / cap / speed: 12 slots / 32GB /
2933MHz, total memory per node: 384 GB DDR RAM, boot drive: INTEL SSDSC2BB800G?7. For 1 billion rows: Dual socket Intel Xeon Platinum 8260M CPU, 24 cores per socket, 2.40GHz base frequency, DRAM memory: 384 GB 12x32GB DDR4 Samsung
@ 2666 MT/s 1.2V, Optane memory: 3TB 12x256GB Intel Optane @ 2666MT/s, kernel: 4.15.0-91-generic, OS: Ubuntu 20.04.4 inte|
s 27



https://github.com/toddwschneider/nyc-taxi-data

Intel Modin + XGBoost E2E workload Intel oneAPI Al toolkit

Combine Intel® oneAPI Al Analytics Toolkit optimizations such as Modin and Intel Optimizations for XGBoost to boost your E2E performance

DLASTIC PlasTICC Workload Performance Speedup with

Phase-wise % breakdown O pti m izatio nS
Higher is better

E 18x
& faster

E2E

J Readcsv m® ETL = ML,

20
Intel Distribution of Intel Optimizations for
Modin XGBoost

10
Workload Info: PLASTICC is an open data challenge to classify o T T EEERCEEEES SIS m o mAmmsEEEE S aEEes s mm AR . S
objects in the sky that vary in brightness using simulated Readcsv ETL ML Total Time
astronomical time-series data. The challenge is to determine a Unoptimi -

noptimized M Software Optimized

probability that each object belongs to one of 14 classes of
astronomical filters.

Results have been estimated or simulated. Performance varies by use, Cco Igu ation and other factors. Learn more at www.Intel.co! /Fe orma CelndeX.See /-\ppe dix for co 1gu ations



Develop Fast Neural Networks on Intel® CPUs & GPUs

with Performance-optimized Building Blocks

Accelerating Deep Learning with
Intel® oneAPI Al Analytics Toolkit

=

intel.



Develop Fast Neural Networks on Intel® CPUs & GPUs

with Performance-optimized Building Blocks

Intel® oneAPI Deep Neural Network Library
(oneDNN)

=

intel.



Intel® oneAPI Deep Neural Network Library (oneDNN)

An open-source cross-platform performance library for deep learning
applications

* Helps developers create high performance deep learning frameworks

» Abstracts out instruction set and other complexities of performance
optimizations

. _Sabme API for both Intel CPUs and GPUs, use the best technology for the
jo

* Supports Linux, Windows and macOS

* Open source for community contributions

More information as well as sources:
https://github.com/oneapi-src/oneDNN

intel.
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Intel® oneAPI Deep Neural Network Library

Basic Information

Features

API: C, C++, SYCL

Training: float32, bfloat16("

Inference: float32, bfloat16("), float16", and int8(")
MLPs, CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU)

Support Matrix
Compilers: Intel, GCC, CLANG, MSVC, DPC++
OS: Linux, Windows, macOS

Hardware: Intel® Atom, Intel® Core™, Intel® Xeon™
Runtimes: OpenMP, TBB, DPC++

Hardware: Intel HD Graphics, Intel® Iris® Plus Graphics
Runtimes: OpenCL, DPC++

Convolution 2D/3D Direct Convolution/Deconvolution, Depthwise separable
convolution
2D Winograd convolution

Pooling 2D/3D Maximum
2D/3D Average (include/exclude padding)

Eltwise (Loss/activation) ReLU(bounded/soft), ELU, Tanh;
Softmayx, Logistic, linear; square, sqrt, abs, exp, gelu, swish

RNN cell RNN cell, LSTM cell, GRU cell
Data type f32, bfloat16, s8, u8

(1) Low precision data types are supported only for platforms where hardware
acceleration is available

intel,



Overview of Intel® optimizations for
TensorFlow*

=
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Intel® TensorFlow™ optimizations

1. Operator optimizations: Replace default (Eigen) kernels by highly-
optimized kernels (using Intel® oneDNN)

2. Graph optimizations: Fusion, Layout Propagation

3. System optimizations: Threading model

intel. 34



Run TensorFlow* benchmark

intel. 3



Operator optimizations

Examples Weights

In TensorFlow, computation
graph is a data-flow graph.

intel. 36



Operator optimizations

Replace default (Eigen) kernels by
highly-optimized kernels (using
Intel® oneDNN)

Intel® oneDNN has optimized a set
of TensorFlow operations.

Library is open-source
(https://github.com/oneapi-
src/oneDNN) and downloaded

automatically when building
TensorFlow.

orward | Backward

Conv2D
Relu, TanH, ELU

MaxPooling
AvgPooling
BatchNorm
LRN

MatMul, Concat

Conv2DGrad

RelUGrad,
TanHGrad,
ELUGrad

MaxPoolingGrad
AvgPoolingGrad
BatchNormGrad

LRNGrad

intel.
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Fusing computations

= i o ,

Sum
M—T Conv+ReLU+Sum

= On Intel processors a high percentation of time = The frameworks are expected to be able to
is typically spent in BW-limited ops detect fusion opportunities
« ~40% of ResNet-50, even higher for inference * IntelCaffe already supports this

» The solution is to fuse BW-limited ops with
convolutions or one with another to reduce the
# of memory accesses

 Conv+ReLU+Sum, BatchNorm+RelU, etc

intel. 3s



Graph optimizations: fusion

Conv2DWithBias

Before Merge After Merge

BiasAdd

intel. 39



Graph optimizations: layout propagation

Filter Filter Filter

Convert Convert Convert Convert

Conv2D

MklConv2D MklConv2D

Convert

MklReLU

\4

MklReLU

1y

il

Shape Shape

Initial Graph ————  After Layout Conversions —_— After Layout Propagation

All oneDNN operators use highly-optimized layouts for TensorFlow tensors.

intel.
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Data Layout has a BIG Impact

« Continuous access to avoid gather/scatter
* Have iterations in inner most loop to ensure high vector utilization
* Maximize data reuse; e.g. weights in a convolution layer

* Overhead of layout conversion is sometimes negligible, compared with operating on
unoptimized layout

Channel based
21 18 1 . 8 92 . (NCHW)
21 18 32 6 3
8 92 37 29 44 Pixel based
1 21 8 | 18 | 92 . 1 | 11 - | (NHWO)

40 | 11 9 | 22 3| 26
for i= 1 to N # batch size

for j = 1 to C # number of channels, image RGB = 3 channels
23 3 47 29 88 L for k =1 to H # height

for 1 =1 to W # width
5 15 16 22 46 12 dot_product( ..)

29 9 13 11 1

More details: https://oneapi-src.github.io/oneDNN/understanding memory formats.html |nte|


https://oneapi-src.github.io/oneDNN/understanding_memory_formats.html

More on memory channels: Memory layouts

= Most popular memory layouts for image recognition
are nhwc and nchw

* Challenging for Intel processors either for vectorization or
for memory accesses (cache thrashing)

* Intel oneDNN convolutions use blocked layouts
* Example: nhwc with channels blocked by 16 — nChw16c¢

» Convolutions define which layouts are to be used by other
primitives

* Optimized frameworks track memory layouts and
perform reorders only when necessary

More details: https://oneapi-src.github.io/oneDNN/understanding memory formats.html
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System optimizations: load balancing

* TensorFlow graphs offer opportunities for parallel
execution.

* Threading model

1. inter_op_parallelism_threads = max number of
operators that can be executed in parallel

2. intra_op_parallelism_threads = max number of
threads to use for executing an operator

3. OMP_NUM_THREADS = oneDNN equivalent of
intra_op parallelism_threads

intel.
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oneDNN <-> Frameworks interaction

tf_model.py

load data
matmul
matmul
tanh

print_result

call impl_load_data

call onednn_gc_matmul e—

TensorFlow

Op implementations
Optimizer

impl_load_data

impl_matmul

impl_tanh

call onednn_gc_matmul, po=tanh

call impl_print_result :

»
onednn_glue_code_matmul

AN

All parameters are specified at creation
time, so that oneDNN generate the

oneDNN

most optimized kernel(s).

N\

class matmul {
Py matmul(bool tanh_post);

P execute(sycl::queue q,

sycl::buffer A,
sycl::buffer B,
sycl::buffer C);

intel.
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oneDNN architecture overview

Intel oneDNN (binary)

CPU implementation

Kernels
C++ AOT

Xbyak (x86 asm JIT)

I}
Threading layer

Eigen OMP TBB

—

oneDNN (open source)

—@ @

| Dispatcher |
DPC++ GPU implementation OpenCL GPU implementation
Kernels | | Kernels
OpenCLC
C folrlMetall (ICM) )
nGEN: (Gen alsr:n Jim) —

@ binary -> LO -> SYCL @

interoperability API
DPC++ runtime

I}

LevelO (LO) GPU runtime @ OpenCL GPU runtime

@
©)

®

@
®

OpenCL APl is not available as part
of Intel oneAPI binary distribution

Dispatching between CPU and GPU
is based on the kind of device
associated with the DPC++ queue

All GPU kernels are compiled in
runtime. CM and nGEN support is
not available publicly yet.
Adding/migrating to DPC++ kernels
is under consideration

OpenCL GPU RT is always needed
to compile OpenCL C and CM
kernels

In case of DPC++ and LO, binary
kernels need to be wrapped to LO
modules to create SYCL kernels
eventually

Under DPC++ APIl/runtime, users
can run on GPU via either OpenCL
or LO GPU runtime: it should be
specified in compile time, but can
be checked during execution time

intel.
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Develop Fast Neural Networks on Intel® CPUs & GPUs

with Performance-optimized Building Blocks

Intel® optimizations for Py Torch

=

intel.



PyTorch Optimization Strategy

O Intel® Extension

PyTO rch + for PyTorch

(IPEX)

e General |A feature » Early access/adoption of aggressive
enabling and performance optimizations through IPEX.
optimizations in stock = Minimal line of code changes to get
PyTorch. benefit from IPEX.

intel. 47



Py Torch-|

PEX
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IPEX Architecture

Custom Modules Graph-mode
and Optimizers

Eager-mode

oneDNN Graph Custom Graph
Fusion Passes Fusion Passes

oneDNN Graph Custom JIT
Custom Ops Fusion Ops Fusion Ops

. L

| } oneDNN Graph
ATen Kernels Custom Kernels JIT Kernels IIT Kernels
‘/\ .J'

AT
o oneDNN
Parallel

ATen Ops

Custom
JIT Kernels

UOISUaIXJ awiluny

Vectorize eV (eln Rl

OpenMP Thread Runtime
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IPEX Performance boosts (FP32)

Intel Extension vs. Stock PyTorch (1.10) - ICX FP32 Intel Extension vs. Stock PyTorch (1.10) - SPR FP32

3.0x%
3.0x%
30 )

Ox

B II II II II II I| | II II II I| o
.Ox 1.0
*z« S-r
S & & @aﬁ 0x

4.0x

3.0x

3
]

[

>
[

-

X
‘i‘ 'b z'a‘
-‘i ‘L ‘\D o ‘;" ‘1{?
& T S R A
& \!.\“ Q(_':'?" ¢ r{\f;,';‘?" Y ResMet-50 BERT- Large DLEM 55D ResNet- ResMext 101 RNN-T
& 7 34
B PyTorch 1.10  mIntel Extension for PyTorch B PyTorch 1.10 W Intel Extension for PyTorch
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L
Training
BF16 speedup vs
FP32 with IPEX

Single instance BF16 training performance gains over baseline (FP32
with Intel® Math Kernel Library for DLRM and BERT-Large, FP32 with
Intel® oneDNN for ResNext-101-32x4d), measured on single-socket
Intel(R) Xeon(R) Platinum 8380H Processor with 28 cores. The DLRM
model uses 2K mini-batch-size with Criteo terabyte dataset, and the
hyper-parameters use the MLPerf configuration. The BERT-large
model uses 24 mini-batch-size with WikiText dataset. The ResNext-
101-32x4d uses 128 mini-batch-size with ILSVRC2012 dataset.
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Deep Learning Training (BF16 vs FP32

Speedup Ratio)

BERT-Large

ResNext-101-32x4d
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L]

nferencing

BF16 speedup Vs
-P32 with IPEX

Multi-instance BF16 inference performance gains over baseline (FP32
with Intel® Math Kernel Library for DLRM and BERT-Large, FP32 with
Intel® oneDNN for ResNext-101-32x4d), measured on 8-socket

Intel(R) Xeon(R) Platinum 8380H Processor with 28 cores per socket.

The DLRM model uses 64 mini-batch-size perinstance with Criteo
terabyte dataset, and the hyper-parameters use the MLPerf
configuration. The BERT-large model uses 1 mini-batch-size with
WikiTest dataset. The ResNext-101-32x4d uses 1 mini-batch-size with
ILSVRC2012 dataset.
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Deep Learning Inferencing (BF16 vs
FP32 Speedup Ratio)

BERT-Large

4.26

ResNext-101-32x4d

intel.

53



Distributed deep learning with
Intel® oneCCL

=
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Intel” one API Collective Communications Library

Optimize Communication Patterns

oneCCL provides optimized communication patterns
for high performance on Intel CPUs & GPUs to

. . .. . Intel SW
distribute model training across multiple nodes e ]

Transparently supports many interconnects, such as
Intel® Omni-Path Architecture, InfiniBand, & Ethernet

ML /DL

Frameworks / Libraries F

Horovod
oneCCL API

MPI / OFI API DPC++ / LevelO API

oneCCL

Intel MPI / Libfabric

Built on top of lower-level communication B nterfoce)

middleware-MP| & libfabrics
Enables efficient implementations of collectives used O providers ﬁ
for deep learning training-all-gather, all-reduce, and ﬂ m “

Hard
reduce-scatter ardware

A
DPC++ / LevelO
Runtime

CPU
(scale-up)

GPU
(scale-up)

1 oneCCL is included in the ( Notwr b

oneAPT Intel® oneAPI| Base Toolkit oneCCL Product Page

Intel® oneAPI Collective Communications Library 2022 |nte|®
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https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html?cid=sem&source=sa360&campid=2021_q1_iags_us_iagsoapi_iagsoapiee_awa_text-link_brand_exact_cd_dpd-oneapi-base-toolkit_O-2J3MV_google_div_oos_non-pbm&ad_group=brand_oneapi-base-toolkit_awa&intel_term=intel+oneapi+base+toolkit&sa360id=43700053523136144&gclid=CjwKCAjwmv-DBhAMEiwA7xYrd9mklaTQD71AhHgr3UgdUU-rPZ22HynYsMwbqsVgIs-o7xkjdtMBYRoCp-8QAvD_BwE&gclsrc=aw.ds#gs.zcurl2
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/oneccl.html

Distributed Al on a real-world use-case

Problem Statement: Al Algorithm to segment* the Metabolic Tumour Volume
(MTV) in oesophageal cancer

* Segmentation: Find the contour of the tumor on the CT scan
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Al solution to for tumor segmentation:

Labelled Data Q
BIINEIE]

New patient

Network Training UrEineEe
(U-Net model) (e Inferencing
Datacenter On-Premise

intel. 57



Performance results
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Horovod: 39-party Framework for scaling DL workloads inteL 58



Al Software Stack for Intel® XPUs

Intel offers a Robust Software Stack to Maximize Performance of Diverse Workloads

Engineer Data

Data Analytics at Scale Optimized Frameworks and Middleware
=12 MODIN gsclpy W TensorFlow O PyTorch Qxnet
|::| pandas ﬁ:ﬁ NumPy .hﬂ 19;/_'; PaddlePaddle € ONNX
omni-sci 2 Numba %gﬂoost s CatBoost >+ LightGBM

With Intel Optimizations

1 oneDAL oneDNN

oneAPI

Container Repository MLOps
ONECONTAINER CNVRG.IO

N
D =|z| Laptop/Workstation ( 5 Server/Cloud

Create machine learning & deep learning models

Optimize and Deploy Models

Automate
Maodel Tuning
AutoML

SigOpt

oneCCL

Automate
Low-Precision
Optimization

INC

Write Once
Depoly
Anywhere

OpenVINO
Toolkit

oneMKL

Developer Sandbox

DEVCLOUD

&%l ecoe
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Thank you
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