
Andrey Alekseenko

A oneAPI Case Study: GROMACS

KTH Royal Institute of Technology & SciLifeLab

Stockholm, Sweden

GROMACS

• Open source molecular dynamics engine
• One of the most used HPC codes worldwide
• High-performance for a wide range of modeled systems
• … and on a wide range of platforms:

• from supercomputers to laptops (Folding@Home)
• x86, x86-64, ARM, POWER, SPARC
• 11 SIMD backends
• NVIDIA, AMD, and Intel GPUs; Intel Xeon Phi
• Windows, MacOS, included in many Linux distros

2022-02-17 EuroCC Intel Dev Tools Webinar 2

GROMACS 2022

• (Mostly) modern C++17 codebase
• 439k lines of C++ code
• With a bit of legacy (first release: 1991)

• MPI for inter-node parallelism
• OpenMP for multithreading
• SIMD for low-latency operations on CPU
• GPU offload for high-throughput operations

• CUDA: NVIDIA
• OpenCL: NVIDIA, AMD, Intel
• SYCL: NVIDIA, AMD, Intel

2022-02-17 EuroCC Intel Dev Tools Webinar 3

Molecular dynamics

• Iterative problem
• Like N-body, but with fancier physics

• One step 1 fs, need to simulate µs to ms
• 109-1012 steps

2022-02-17 EuroCC Intel Dev Tools Webinar 4

Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516

Heterogeneous parallelization

• Latency
• Minimizing CPU and GPU stalls
• Resources are not infinite

• Host-to-device data exchange is costly
• Internode even costlier

• Optimal offloading scheme depends on simulated system
• And on the hardware

2022-02-17 EuroCC Intel Dev Tools Webinar 5

Molecular dynamics: real schedule

2022-02-17 EuroCC Intel Dev Tools Webinar 6

Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516

Molecular dynamics: real schedule

2022-02-17 EuroCC Intel Dev Tools Webinar 7

Páll et al., J. Chem. Phys. 153, 134110 (2020)

Send data ASAP
to remote ranks

Only if the list
has changed

Transfer local
coordinates
while waiting
for remote ones

PME and NB work
can be balanced
by tuning pair list

Should be scheduled before
big local NB kernel

https://aip.scitation.org/doi/abs/10.1063/5.0018516

GPU feature support in GROMACS 2020

Device detection √ √

Non-bonded √ √

PME √ √

Update (integration) √ X

Bonded √ X

Direct GPU-GPU comm √* X

Hardware support NVIDIA NVIDIA, AMD, Intel

2022-02-17 EuroCC Intel Dev Tools Webinar 8

Released January 2020

Why another GPU framework?

2022-02-17 EuroCC Intel Dev Tools Webinar 9

HPC systems coming in 2021

Intel Ponte Vecchio GPUAMD Instinct GPU

First exascale systems

2

Why not OpenCL

• OpenCL kernels are C99, the rest of GROMACS is C++17
• C++ kernels are not widely supported

• Separate-source model

• Hard to maintain

2022-02-17 EuroCC Intel Dev Tools Webinar 10

SYCL

• Open standard, free (libre) implementations
• Implemented on top of existing backend

• Intel® oneAPI DPC++: OpenCL and LevelZero; CUDA
• hipSYCL: CUDA, HIP; LevelZero (via DPC++)
• Leverage existing profiling and debugging tools
• And device compilers

• Standard C++ with a custom library
• No need for extra support in linters, IDEs, etc.

• Logically similar to OpenCL
• (Almost) no need to deeply modify existing code

2022-02-17 EuroCC Intel Dev Tools Webinar 11

Comparison of GPU frameworks

Maturity level √ √ X

Open standard X √ √

HW support: vendor NVIDIA NVIDIA, AMD, Intel Intel

HW support: 3rd party - - AMD*, NVIDIA

Single-source model √ X √

Syntax C++17/CUDA C99/OpenCL C++17

In GROMACS Main GPU backend for
NVIDIA GPUs.

Primary support for AMD
and Intel GPUs, some
support for NVIDIA.

Early support in 2021.
Full support in 2022

(experimental).

2022-02-17 EuroCC Intel Dev Tools Webinar 12

SYCL enablement plan

• Use oneAPI DPC++, but try to stay standard-compliant
• Step 1:

• Device detection and initialization
• Remove (most) hacks specific for CUDA/OpenCL

• Step 2:
• Port kernels accounting for 95% of runtime:

• Non-bonded force & energy kernels

• Step 3:
• Port update kernels to stay fully on the device for ~100 iterations
• PME electrostatics (kernels and FFT)

2022-02-17 EuroCC Intel Dev Tools Webinar 13

DPC++ Compatibility Tool

• We want to have both CUDA and SYCL in the same codebase
• Existing abstraction layer for Device, Queue, etc

• Already supports CUDA and OpenCL
• Work on expanding this abstraction layer!

• CUDA kernels heavily optimized for NVIDIA
• OpenCL kernels have Intel-optimized code paths
• Rewriting kernels is ~trivial

• Conclusion: manual porting

2022-02-17 EuroCC Intel Dev Tools Webinar 14

SYCL version requirements

• Kernels already highly optimized:
• Subgroup-level functionality
• Floating-point atomics

• SYCL 1.2.1 is not enough!
• SYCL 2020 published in February 2021

• Porting work started in September 2020

• No SYCL implementation is fully standard-compliant
• Had to rely on oneAPI extensions

• Most became part of SYCL2020

2022-02-17 EuroCC Intel Dev Tools Webinar 15

GPU framework comparison

2022-02-17 EuroCC Intel Dev Tools Webinar 16

Scheduling
in-order queue
or explicit DAG

in-order and
out-of-order queues

implicit DAG and
in-order queues*

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection by special function explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes

Resource management manual manual RAII

GPU framework comparison

2022-02-17 EuroCC Intel Dev Tools Webinar 17

Scheduling
in-order queue
or explicit DAG

in-order and
out-of-order queues

implicit DAG and
in-order queues*

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection by special function explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes

Resource management manual manual RAII

We already had an abstraction layer

GPU framework comparison

2022-02-17 EuroCC Intel Dev Tools Webinar 18

Scheduling
in-order queue
or explicit DAG

in-order and
out-of-order queues

implicit DAG and
in-order queues*

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection by special function explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes

Resource management manual manual RAII

DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with explicit barrier

synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• Bad: Runtime must be smart
• Ugly: Additional divergence between backends

2022-02-17 EuroCC Intel Dev Tools Webinar 19

DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with explicit barrier

synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• Bad: Runtime must be smart
• Ugly: Additional divergence between backends

2022-02-17 EuroCC Intel Dev Tools Webinar 20

DAG-based scheduling

In-order queues:
• D2H Copy A
• D2H Copy B
• Enqueue event
• …
• Wait for the event
• // both A and B completed

DAG:
• D2H Copy A
• D2H Copy B
• Use the event from B
• …
• Wait for the event
• // only B completed

2022-02-17 EuroCC Intel Dev Tools Webinar 21

DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with explicit barrier

synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• Bad: Runtime must be smart
• Ugly: Additional divergence between backends

2022-02-17 EuroCC Intel Dev Tools Webinar 22

DAG-based scheduling

2022-02-17 EuroCC Intel Dev Tools Webinar 23

Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516

DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with explicit barrier

synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• Bad: Runtime must be smart
• Ugly: Additional divergence between backends

2022-02-17 EuroCC Intel Dev Tools Webinar 24

DAG-based scheduling

• In 2020, USM was not yet standardized
• Use buffers, treat them like a simple device memory
• Explicitly synchronize HtoD and DtoH data copies

• Implicit DtoD synchronizations?
• No performance benefits cf. explicit DtoD synchronizations

• In 2021, switched to USM and in-order queues
• Accessors too demanding of compiler
• Still keep buffers as an option

2022-02-17 EuroCC Intel Dev Tools Webinar 25

GPU framework comparison

2022-02-17 EuroCC Intel Dev Tools Webinar 26

Scheduling
in-order queue
or explicit DAG

in-order and
out-of-order queues

implicit DAG and
in-order queues*

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection by special function explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes

Resource management manual manual RAII

Synchronization Events

• Inspired by CUDA, we create events once and reuse them
• Event can be added to a list of dependencies, and enqueued later

• Event can be recorded far from the last submission

• Use an object to hold a reference to an event
• Custom extensions to mark events:

• oneAPI DPC++: SYCL_EXT_ONEAPI_ENQUEUE_BARRIER
• hipSYCL: HIPSYCL_EXT_QUEUE_WAIT_LIST

2022-02-17 EuroCC Intel Dev Tools Webinar 27

GPU framework comparison

2022-02-17 EuroCC Intel Dev Tools Webinar 28

Scheduling
in-order queue
or explicit DAG

in-order and
out-of-order queues

implicit DAG and
in-order queues*

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection by special function explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes

Resource management manual manual RAII

Other differences

• Exceptions vs return codes
• Variable sub-group (warp) sizes

• SIMD32 supported, but rarely optimal

• Launching kernel:
• CUDA: (# work groups total; # items in work group)
• OpenCL and SYCL: (# items total, # items in work group)

• Or even (# items total)

• Thread indexing order:
• CUDA and OpenCL: thread (x, y, z) is adjacent to (x+1, y, z)
• SYCL: thread (x, y, z) is adjacent to (x, y, z+1)

2022-02-17 EuroCC Intel Dev Tools Webinar 29

SYCL vs OpenCL

• No more duplicating structure definitions
• No more duplicating helper functions
• Templates instead of preprocessor:

2022-02-17 EuroCC Intel Dev Tools Webinar 30

#ifdef LJ_FORCE_SWITCH
ifdef CALC_ENERGIES

calculate_force_switch_F_E(nbparam, c6, c12, inv_r, r2, &F_invr, &E_lj_p);
else

calculate_force_switch_F(nbparam, c6, c12, inv_r, r2, &F_invr);
endif /* CALC_ENERGIES */
#endif /* LJ_FORCE_SWITCH */

if constexpr (props.vdwFSwitch)
{

ljForceSwitch<doCalcEnergies>(
nbparam, c6, c12, rInv, r2, &fInvR, &energyLJPair);

}

SYCL vs OpenCL

2022-02-17 EuroCC Intel Dev Tools Webinar 31

ifndef LJ_COMB
__local int* atib = (__local int*)(LOCAL_OFFSET); //NOLINT(google-readability-casting)

undef LOCAL_OFFSET
define LOCAL_OFFSET (atib + c_nbnxnGpuNumClusterPerSupercluster * CL_SIZE)
else

__local float2* ljcpib = (__local float2*)(LOCAL_OFFSET);
undef LOCAL_OFFSET
define LOCAL_OFFSET (ljcpib + c_nbnxnGpuNumClusterPerSupercluster * CL_SIZE)
endif

auto sm_atomTypeI = [&]() {
if constexpr (!props.vdwComb)
{

return sycl::local_accessor<int, 2>(
sycl::range<2>(c_nbnxnGpuNumClusterPerSupercluster, c_clSize), cgh);

}
else { return nullptr; }

}();

auto sm_ljCombI = [&]() {
if constexpr (props.vdwComb)
{

return sycl::local_accessor<Float2, 2>(
sycl::range<2>(c_nbnxnGpuNumClusterPerSupercluster, c_clSize), cgh);

}
else { return nullptr; }

}();

SYCL vs OpenCL

2022-02-17 EuroCC Intel Dev Tools Webinar 32

ifndef LJ_COMB
__local int* atib = (__local int*)(LOCAL_OFFSET); //NOLINT(google-readability-casting)

undef LOCAL_OFFSET
define LOCAL_OFFSET (atib + c_nbnxnGpuNumClusterPerSupercluster * CL_SIZE)
else

__local float2* ljcpib = (__local float2*)(LOCAL_OFFSET);
undef LOCAL_OFFSET
define LOCAL_OFFSET (ljcpib + c_nbnxnGpuNumClusterPerSupercluster * CL_SIZE)
endif

auto sm_atomTypeI = [&]() {
if constexpr (!props.vdwComb)
{

return sycl::accessor<int, 2, mode::read_write, target::local>(
sycl::range<2>(c_nbnxnGpuNumClusterPerSupercluster, c_clSize), cgh);

}
else { return nullptr; }

}();

auto sm_ljCombI = [&]() {
if constexpr (props.vdwComb)
{

return sycl::local_accessor<Float2, 2, mode::read_write, target::local>(
sycl::range<2>(c_nbnxnGpuNumClusterPerSupercluster, c_clSize), cgh);

}
else { return nullptr; }

}();

SYCL beyond oneAPI

2022-02-17 EuroCC Intel Dev Tools Webinar 33

https://www.khronos.org/sycl/

https://www.khronos.org/sycl/

Portability in practice: hipSYCL

• At start, only Intel oneAPI DPC++ and Intel GPUs supported
• hipSYCL added later to target AMD devices

• Effort:
• Workarounds due to backend / compiler issues

• Different parts of SYCL 2020 implemented
• HIPSYCL_EXT_QUEUE_WAIT_LIST

• Fix a few bugs not triggered with oneAPI
• CMake scripting
• Kernel optimizations ported from OpenCL

2022-02-17 EuroCC Intel Dev Tools Webinar 34

Portability in practice: results

• GROMACS can use SYCL to run on:
• Intel GPUs via oneAPI,
• AMD GPUs via hipSYCL,
• NVIDIA GPUs via oneAPI and hipSYCL

• Performance, compared to HIP/OpenCL:
• Complex kernels are slower

• Accessors are hard to optimize
• Less complex kernels on par, sometimes faster
• Extra runtime overhead

• Relatively little GPU-specific code
• Sub-group-size-dependent algorithms
• FFT invocation

2022-02-17 EuroCC Intel Dev Tools Webinar 35

Portability in practice: FFT

• 3D real-to-complex, forward and backward FFT
• Intel GPUs: use MKL

• Had issues in oneAPI 2021.x

• AMD GPUs: use rocFFT via HIPSYCL_EXT_ENQUEUE_CUSTOM_OPERATION
• NVIDIA GPUs: not implemented, but can use cuFFT

2022-02-17 EuroCC Intel Dev Tools Webinar 36

Miscellaneous

• Using existing profiling tools is great
• E.g., NVIDIA Compute Sanitizer

• Compilation is slow
• Even in runtime, thanks to JIT
• Especially with 168 templated kernel flavors in a single file

• -fsycl-code-split=per_kernel

• SYCL is relatively young and unstable
• New and exciting features added
• Things get deprecated and removed

• Code written for oneAPI 2021.3 (Jul 2021) might not work with 2022.0 (Jan 2022)
• Easy to fix

• Things get broken
2022-02-17 EuroCC Intel Dev Tools Webinar 37

SYCL in GROMACS: milestones

• September 2020: SYCL porting started, targeting Intel GPUs

• January 2021: “2021-sycl” release with basic functionality for
Intel GPUs

• September 2021: SYCL selected for future AMD GPU support

• February 2022: SYCL is part of the mainline release, supports
most GPU offload features, and shown to work on Intel, AMD,
and NVIDIA GPUs

2022-02-17 EuroCC Intel Dev Tools Webinar 38

SYCL support in GROMACS 2021

• Implementation: DPC++
• Hardware: Intel GPUs
• Offloaded operations: non-bonded forces, integration

2022-02-17 EuroCC Intel Dev Tools Webinar 39

SYCL support in GROMACS 2022

• Implementation: DPC++ and hipSYCL
• Hardware: Intel and AMD GPUs; NVIDIA confirmed to work
• Offloaded operations: non-bonded forces, integration with

constraints, GPU update helpers, PME

2022-02-17 EuroCC Intel Dev Tools Webinar 40

GPU feature support in GROMACS 2022

Device detection √ √ √

Non-bonded √ √ √

PME √ √ √

Update (integration) √ X √

Bonded √ X X

Direct GPU-GPU comm √ X X

2022-02-17 EuroCC Intel Dev Tools Webinar 41

To be released February 2022

Conclusions

• “Write once, run anywhere” mostly works
• Trivial changes to support all three major vendors with oneAPI

and hipSYCL

• But running fast is neither easy
• Still need vendor-specific code branches to get high performance

• … nor guaranteed
• On par with OpenCL with oneAPI DPC++, even faster when using

LevelZero
• Occasional large regressions with hipSYCL

• API is similar to OpenCL in spirit, but usually nicer
• The whole ecosystem is rapidly evolving

2022-02-17 EuroCC Intel Dev Tools Webinar 42

Acknowledgements

• Intel Corporation
• Heinrich Bockhorst and Roland Schulz (Intel)
• Aksel Alpay (Heidelberg University Computing Centre)
• GROMACS dev team, in particular Mark Abraham, Paul Bauer,

Szilárd Páll, and Artem Zhmurov

2022-02-17 EuroCC Intel Dev Tools Webinar 43

Learn more

• https://gromacs.org/
• https://www.gromacs.org/Support/GMX-Developers_List
• https://gitlab.com/gromacs/gromacs/
• https://manual.gromacs.org/documentation/2022-

rc1/index.html

• Páll et al., J. Chem. Phys. 153, 134110 (2020)

• If you have questions: andrey.alekseenko@scilifelab.se

2022-02-17 EuroCC Intel Dev Tools Webinar 44

https://gromacs.org/
https://www.gromacs.org/Support/GMX-Developers_List
https://gitlab.com/gromacs/gromacs/
https://manual.gromacs.org/documentation/2022-rc1/index.html
https://aip.scitation.org/doi/abs/10.1063/5.0018516

