
Intel® oneAPI AI tools

Shailen Sobhee - Senior AI Solution Engineer

- HPC Software Architect for Exascale

- (shailen.sobhee@intel.com)

Intel® AI Workshop
16.02.2022

2

Notices and Disclaimers
▪ Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system

configuration.

▪ No product or component can be absolutely secure.

▪ Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete
information about performance and benchmark results, visit http://www.intel.com/benchmarks .

▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit http://www.intel.com/benchmarks .

▪ Intel® Advanced Vector Extensions (Intel® AVX) provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause
a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies
depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

▪ Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

▪ Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

▪ Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are
accurate.

▪ © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/go/turbo

33

▪ AI Software Stack for XPUs

▪ Intel® oneAPI AI Analytics
toolkit

▪ oneAPI Tools for Machine
Learning

▪ oneAPI Tools for Deep
Learning

Agenda

4

AI Software Stack for Intel® XPUs

5

Core Python
Intel-optimized

Intel® oneAPI AI Analytics Toolkit

▪ Accelerates end-to-end Machine
Learning and Data Analytics pipelines
with frameworks and libraries optimized
for Intel® architectures

Who Uses It?

▪ Data scientists, AI Researchers, Machine
and Deep Learning developers, AI
application developers

Learn More: intel.com/oneAPI-AIKit

Machine learning

Data Analytics

Deep Learning

Intel® Optimization
for TensorFlow

Intel® Optimization for
PyTorch & IPEX

Model Zoo
for Intel® Architecture

NumPy

Intel® Extension for
Scikit-learn

Intel® oneAPI AI Analytics Toolkit

Intel® optimizations for
XGBoost

Intel® Neural Compressor

Intel® Distribution of Modin

OmniSci Backend

SciPy Numba Pandas DPPY

https://software.intel.com/en-us/oneapi/ai-kit

6

6

▪ The layers of quantitative
Python*

▪ The Python* language is interpreted and has
many type checks to make it flexible

▪ Each level has various tradeoffs; NumPy*
value proposition is immediately seen

▪ For best performance, escaping the Python*
layer early is best method

Introduction to Python* Performance

Python*

NumPy*

Intel® oneAPI
Math Kernel
Library (oneMKL)

• Enforces Global Interpreter
Lock (GIL)

• Pure Python is single-threaded;
has abstraction overheads and
no advanced types.

• Gets around the GIL
(multi-thread and multi-core)

• BLAS API can be the
bottleneck

• Gets around BLAS API
bottleneck

• Much stricter typing

• Fastest performance level

• Dispatches to hardware
vectorization

*Basic Linear Algebra Subprograms (BLAS)
[CBLAS]

Intel® oneMKL included with Anaconda* standard bundle; is Free for Python*

Intel® oneAPI Data Acceleration Library
(Intel®oneDAL)

Accelerating Machine Learning with Intel® oneAPI Analytics Toolkit

8

Algorithms (batch, streaming and distributed)

CPU Backend GPU Backend

oneMKLoneTBB GPU Kernels

MPI

oneCCL

Data

Management

oneDAL Interface (part of oneAPI spec)

CPU Kernels

Python Binding Java Binding

ML
integrated planned integrated*interop

Intel®oneAPI Data Analytics Library (oneDAL)
Framework Interfaces & Software Stack

DPC++ Runtime (future)

Level 0 (future)

DPC++ Runtime

Level 0

API designed to be hardware and vendor independent

Relies on Data Parallel C++ (DPC++) and C++17

9

9 Intel® oneAPI Data Analytics Library (oneDAL) algorithms
Data Transformation and Analysis

Basic statistics
for datasets

Basic
statistics

Variance-
Covariance

matrix

Correlation and
dependence

Cosine
distance

Correlation
distance

Matrix factorizations

SVD

QR

Cholesky

Dimensionality
reduction

PCA

Outlier detection

Association rule
mining (Apriori)

Univariate

MultivariateQuantiles

Order
statistics Optimization solvers

(SGD, AdaGrad, lBFGS, CD)

Math functions
(exp, log,…)

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

tSVD

Algorithms supporting batch processing Intel GPU (Gen 9 & Gen12) & dGPU

10

10Intel® oneAPI Data Analytics Library(oneDAL) Algorithms
Machine Learning

Supervised
learning

Regression

Linear
Regression

Classification

Naïve Bayes

SVC, NuSVC

Unsupervised
learning

K-Means
Clustering

EM for GMM

Collaborative
filtering

Alternating
Least

Squares

Ridge
Regression

Algorithms supporting batch and distributed processing

Algorithms supporting batch processing

Decision Tree

Gradient Boosting

Brown/Logit

Boosting

LASSO

DBSCAN

kNN
Apriori

Logistic
Regression

AdaBoost

Algorithms supporting Intel GPU (Gen 9 & Gen12) & dGPU

Elastic Net

Decision Forest

SVR, NuSVR

11

11

What makes oneDAL faster?

The best performance on Intel Architectures
with oneMKL vs. less performance OS
BLAS/LAPACK libs

1

onDAL targets to many-core systems to achieve
the best scalability on Intel® Xeon, other libs
mostly target to client versions with small
amount of cores

2

C++ baseline Optimized Math routines Threading Advanced Vectorization Memory optimizations Support of the newest

arhitecrures

Scaling-out opportunities

P
e

rf
o

rm
a

n
ce

Other ML libraries DAAL

oneDAL uses the latest available vector-instructions on
each architecture, enables them by compiler options,
intrinsics. Usually other ML libs build application without
vector-instructions support or sse4.2 only.

3

oneDAL’s uses the most efficient memory optimization
practices: minimally access memory, cache access
optimizations, SW memory prefetching. Usually Other ML
libs don’t make low-level optimizations.

4

oneDAL enables new instruction sets
and other HW features even before
official HW launch. Usually other ML
libs do this with long delay.

5

1 2
3

4

5

6

oneDAL provides distributed
algorithms which scale on many
nodes

6

12

12

from sklearn.svm import SVC

X, Y = get_dataset()

clf = SVC().fit(X, y)

res = clf.predict(X)

Intel® Extension for Scikit-learn

from sklearnex import patch_sklearn

patch_sklearn()

from sklearn.svm import SVC

X, Y = get_dataset()

clf = SVC().fit(X, y)

res = clf.predict(X)

Common Scikit-learn Scikit-learn with Intel CPU opts

Intel® extension for sklearnScikit-learn mainline

Same Code,
Same Behavior

• Scikit-learn, not scikit-learn-like

• Scikit-learn conformance
(mathematical equivalence)
defined by Scikit-learn
Consortium,
continuously vetted by public CI

13

Intel® Extension for scikit-learn (Inference)

14

Intel® Extension for scikit-learn (Training)

15

http://www.intel.com/PerformanceIndex

16

oneAPI Data Analytics Library (oneDAL)

16

oneDAL

daal4py

Scikit-Learn* API Compatible

Use directly for

• Scaling to multiple nodes

• Streaming data

• Non-homogeneous
dataframes

• Gradient Boosting (for e.g)

17

▪

▪

▪

•

• 51

•

Train common XGBoost model as usual
xgb_model = xgb.train(params, X_train)

import daal4py as d4p

XGBoost model to DAAL model
daal_model = d4p.get_gbt_model_from_xgboost(xgb_model)

make fast prediction with DAAL
daal_prediction = d4p.gbt_classification_prediction(…).compute(X_test, daal_model)

http://www.intel.com/benchmarks

19

Processing Modes

19

Distributed
Processing

Online
Processing

D1

D2

D3

R = F(R1,…,Rk)

Si+1 = T(Si,Di)

Ri+1 = F(Si+1)

R1

Rk

D1

D2

Dk

R2 R

Si,Ri

Batch
Processing

D1Dk-1Dk
…

Append

R = F(D1,…,Dk)

d4p.kmeans_init(10, method="plusPlusDense") d4p.kmeans_init(10, method="plusPlusDense“,
distributed=“True”)

d4p.kmeans_init(10, method="plusPlusDense“,
streaming=“True”)

20

import daal4py as d4p

initialize distributed execution environment
d4p.daalinit()

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense_{}.csv".format(d4p.my_procid())

compute initial centroids & kmeans clustering
init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

Distributed K-Means using daal4py

21

oneDAL K-Means Fit, Cores Scaling
(10M samples, 10 features, 100 clusters, 100 iterations, float32)

Performance varies by use, configuration, and other factors. Learn more at www.intel.com/PerformanceIndex.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.
Your costs and results may vary. Intel technologies may require enabled hardware, software, or service activation.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more complete information visit www.intel.com/benchmarks.
Configuration: Testing by Intel as of 10/23/2020. Intel® oneAPI Data Analytics Library 2021.1 (oneDAL); Intel® Xeon® Platinum 8280LCPU @ 2.70GHz, 2 sockets, 28 cores per socket, 10M samples, 10 features, 100 clusters, 100 iterations, float32.

2359.5

1139.1

581.9

306.3
159.4 93.6 45.2

0

10

20

30

40

50

60

70

80

90

100

0.0

500.0

1000.0

1500.0

2000.0

2500.0

1 2 4 8 16 28 56

P
a

ra
ll

e
l

e
ff

ic
ie

n
cy

, %

E
xe

cu
ti

o
n

 t
im

e
, s

e
c

Number of cores
Time, s Efficiency (actual), % Efficiency (ideal), %

http://www.intel.com/PerformanceIndex
http://www.intel.com/benchmarks

Intel® Distribution of Modin

Accelerating Machine Learning with Intel® oneAPI Analytics Toolkit

24

Current Data Loading & ETL Landscape
After a certain data size, need to change your API to handle more data

100 MB+
of Data

Increasing data size

Easy to use,

difficult to
scale

Easy to scale,

difficult to use

import pandas as pd

import modin.pandas as pd

25

Modin
▪ Usable and Scalable

To use Modin, replace the pandas import

CPU CPU CPU CPU

CPU CPU CPU CPU

Pandas
DataFrame

Modin
DataFrame

memory

memory

Idle cores

Full utilization

26

Modin

340.0729

31.2453

0

50

100

150

200

250

300

350

400

T
im

e
, s

Execution time Pandas vs. Modin[ray]

Pandas Modin

Intel® Xeon™ Gold 6248 CPU @ 2.50GHz, 2x20 cores

▪ Dataset size: 2.4GB

10.8

speedup

27

NYCTaxi Workload Performance
Pandas vs Modin – Higher is Better

Configurations: For 20 million rows: Dual socket Intel(R) Xeon(R) Platinum 8280L CPUs (S2600WFT platform), 28 cores per socket, hyperthreading enabled, turbo mode enabled, NUMA nodes per socket=2, BIOS:
SE5C620.86B.02.01.0013.121520200651, kernel: 5.4.0-65-generic, microcode: 0x4003003, OS: Ubuntu 20.04.1 LTS, CPU governor: performance, transparent huge pages: enabled, System DDR Mem Config: slots / cap / speed: 12 slots / 32GB /
2933MHz, total memory per node: 384 GB DDR RAM, boot drive: INTEL SSDSC2BB800G7. For 1 billion rows: Dual socket Intel Xeon Platinum 8260M CPU, 24 cores per socket, 2.40GHz base frequency, DRAM memory: 384 GB 12x32GB DDR4 Samsung
@ 2666 MT/s 1.2V, Optane memory: 3TB 12x256GB Intel Optane @ 2666MT/s, kernel: 4.15.0-91-generic, OS: Ubuntu 20.04.4

0

2

4

6

8

10

12

14

16

18

20

Reading Q1 Q2 Q3 Q4

S
p

e
e

d
u

p

NYCTaxi (20 Million rows) - Performance

improvement with Modin+Omnisci

Pandas Modin+Omnisci

0

10

20

30

40

50

60

70

80

90

100

Reading Q1 Q2 Q3 Q4

S
p

e
e

d
u

p

NYCTaxi (1 Billion rows = 1.6 TB in mem) -

Performance improvement with

Modin+Omnisci – using 3TB Optane

Pandas Modin+Omnisci

Results have been estimated or simulated. Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.See Appendix for configurations

Dataset source: https://github.com/toddwschneider/nyc-taxi-data

https://github.com/toddwschneider/nyc-taxi-data

28

PLAsTiCC
Phase-wise % breakdown

Readcsv ETL ML

0

10

20

30

40

50

60

70

Readcsv ETL ML Total Time

Sp
ee

d
 u

p

Unoptimized Software Optimized

18x
faster
E2E

Results have been estimated or simulated. Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.See Appendix for configurations

Intel Modin + XGBoost E2E workload Intel oneAPI AI toolkit

Combine Intel® oneAPI AI Analytics Toolkit optimizations such as Modin and Intel Optimizations for XGBoost to boost your E2E performance

PlasTICC Workload Performance Speedup with
Optimizations

Higher is better

Workload Info: PLAsTiCC is an open data challenge to classify
objects in the sky that vary in brightness using simulated
astronomical time-series data. The challenge is to determine a
probability that each object belongs to one of 14 classes of
astronomical filters.

Intel Distribution of
Modin

Intel Optimizations for
XGBoost

Accelerating Deep Learning with
Intel® oneAPI AI Analytics Toolkit

Develop Fast Neural Networks on Intel® CPUs & GPUs

with Performance-optimized Building Blocks

Intel® oneAPI Deep Neural Network Library
(oneDNN)

Develop Fast Neural Networks on Intel® CPUs & GPUs

with Performance-optimized Building Blocks

31

Intel® oneAPI Deep Neural Network Library (oneDNN)

An open-source cross-platform performance library for deep learning
applications

• Helps developers create high performance deep learning frameworks

• Abstracts out instruction set and other complexities of performance
optimizations

• Same API for both Intel CPUs and GPUs, use the best technology for the
job

• Supports Linux, Windows and macOS

• Open source for community contributions

More information as well as sources:

https://github.com/oneapi-src/oneDNN

https://github.com/oneapi-src/oneDNN

32

Intel® oneAPI Deep Neural Network Library

▪ Features

• API: C, C++, SYCL

• Training: float32, bfloat16(1)

• Inference: float32, bfloat16(1), float16(1), and int8(1)

• MLPs, CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU)

▪ Support Matrix

• Compilers: Intel, GCC, CLANG, MSVC, DPC++

• OS: Linux, Windows, macOS

• CPU

• Hardware: Intel® Atom, Intel® Core™, Intel® Xeon™

• Runtimes: OpenMP, TBB, DPC++

• GPU

• Hardware: Intel HD Graphics, Intel® Iris® Plus Graphics

• Runtimes: OpenCL, DPC++

Basic Information

3
2

Iris is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

(1) Low precision data types are supported only for platforms where hardware
acceleration is available

Intel® oneDNN

Convolution 2D/3D Direct Convolution/Deconvolution, Depthwise separable
convolution
2D Winograd convolution

Inner Product 2D/3D Inner Production

Pooling 2D/3D Maximum
2D/3D Average (include/exclude padding)

Normalization 2D/3D LRN across/within channel, 2D/3D Batch normalization

Eltwise (Loss/activation) ReLU(bounded/soft), ELU, Tanh;
Softmax, Logistic, linear; square, sqrt, abs, exp, gelu, swish

Data manipulation Reorder, sum, concat, View

RNN cell RNN cell, LSTM cell, GRU cell

Fused primitive Conv+ReLU+sum, BatchNorm+ReLU

Data type f32, bfloat16, s8, u8

Overview of Intel® optimizations for
TensorFlow*

34
34

Intel® TensorFlow* optimizations

1. Operator optimizations: Replace default (Eigen) kernels by highly-
optimized kernels (using Intel® oneDNN)

2. Graph optimizations: Fusion, Layout Propagation

3. System optimizations: Threading model

35

Run TensorFlow* benchmark

36
36

Operator optimizations

In TensorFlow, computation
graph is a data-flow graph.

MatMul

Examples Weights

Bias

Add

ReLU

37

Forward Backward

Conv2D Conv2DGrad

Relu, TanH, ELU ReLUGrad,

TanHGrad,

ELUGrad

MaxPooling MaxPoolingGrad

AvgPooling AvgPoolingGrad

BatchNorm BatchNormGrad

LRN LRNGrad

MatMul, Concat

37

Operator optimizations

▪ Replace default (Eigen) kernels by
highly-optimized kernels (using
Intel® oneDNN)

▪ Intel® oneDNN has optimized a set
of TensorFlow operations.

▪ Library is open-source
(https://github.com/oneapi-
src/oneDNN) and downloaded
automatically when building
TensorFlow.

38

Fusing computations

▪ On Intel processors a high percentation of time
is typically spent in BW-limited ops

• ~40% of ResNet-50, even higher for inference

▪ The solution is to fuse BW-limited ops with
convolutions or one with another to reduce the
of memory accesses

• Conv+ReLU+Sum, BatchNorm+ReLU, etc

▪ The frameworks are expected to be able to
detect fusion opportunities

• IntelCaffe already supports this

Conv

Conv

Sum ReLU

Conv

Conv+ReLU+Sum

39

Conv2D

BiasAdd

Input Filter

Bias
Conv2DWithBias

Input Filter Bias

Before Merge After Merge

39

Graph optimizations: fusion

40

All oneDNN operators use highly-optimized layouts for TensorFlow tensors.

Conv2D

ReLU

Input Filter

Shape

MklConv2D

Input Filter

Convert

Convert Convert

MklReLU

Convert

Shape

Convert

Initial Graph After Layout Conversions

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

After Layout Propagation

40

Graph optimizations: layout propagation

41

21 18 32 6 3

1 8 0 3 26

40 9 22 76 81

23 44 81 32 11

5 38 10 11 1

8 92 37 29 44

11 9 22 3 26

3 47 29 88 1

15 16 22 46 12

29 9 13 11 1

21 8 18 92 .. 1 11 ..

21 18 … 1 .. 8 92 ..

for i= 1 to N # batch size
for j = 1 to C # number of channels, image RGB = 3 channels

for k = 1 to H # height
for l = 1 to W # width

dot_product(…)

Channel based
(NCHW)

Pixel based
(NHWC)

41

Data Layout has a BIG Impact

• Continuous access to avoid gather/scatter

• Have iterations in inner most loop to ensure high vector utilization

• Maximize data reuse; e.g. weights in a convolution layer

• Overhead of layout conversion is sometimes negligible, compared with operating on
unoptimized layout

More details: https://oneapi-src.github.io/oneDNN/understanding_memory_formats.html

https://oneapi-src.github.io/oneDNN/understanding_memory_formats.html

42

nchw

R
e
o
rd
e
rs

nChw16c

42

More on memory channels: Memory layouts

▪ Most popular memory layouts for image recognition
are nhwc and nchw

• Challenging for Intel processors either for vectorization or
for memory accesses (cache thrashing)

▪ Intel oneDNN convolutions use blocked layouts

• Example: nhwc with channels blocked by 16 – nChw16c

• Convolutions define which layouts are to be used by other
primitives

• Optimized frameworks track memory layouts and
perform reorders only when necessary

More details: https://oneapi-src.github.io/oneDNN/understanding_memory_formats.html

https://oneapi-src.github.io/oneDNN/understanding_memory_formats.html

43
43

System optimizations: load balancing

▪ TensorFlow graphs offer opportunities for parallel
execution.

▪ Threading model

1. inter_op_parallelism_threads = max number of
operators that can be executed in parallel

2. intra_op_parallelism_threads = max number of
threads to use for executing an operator

3. OMP_NUM_THREADS = oneDNN equivalent of
intra_op_parallelism_threads

44

44

oneDNN <-> Frameworks interaction

TensorFlow

Op implementations

impl_tanh

impl_load_data

impl_matmul

Graph
Optimizer

onednn_glue_code_...onednn_glue_code_matmul

impl_tanhimpl_tanh

...

oneDNNtf_model.py

load_data

matmul

matmul

tanh

print_result

call impl_load_data

call onednn_gc_matmul

call onednn_gc_matmul, po=tanh

call impl_print_result

class matmul {
matmul(bool tanh_post);

execute(sycl::queue q,
sycl::buffer A,
sycl::buffer B,
sycl::buffer C);

};

All parameters are specified at creation
time, so that oneDNN generate the

most optimized kernel(s).

45

oneDNN (open source)

Intel oneDNN (binary)
OpenCL API is not available as part
of Intel oneAPI binary distribution

Dispatching between CPU and GPU
is based on the kind of device
associated with the DPC++ queue

All GPU kernels are compiled in
runtime. CM and nGEN support is
not available publicly yet.
Adding/migrating to DPC++ kernels
is under consideration

OpenCL GPU RT is always needed
to compile OpenCL C and CM
kernels

In case of DPC++ and L0, binary
kernels need to be wrapped to L0
modules to create SYCL kernels
eventually

Under DPC++ API/runtime, users
can run on GPU via either OpenCL
or L0 GPU runtime: it should be
specified in compile time, but can
be checked during execution time

oneDNN architecture overview

45

1

2

3

DPC++ API
OpenCL APITraditional C++ API

DPC++ GPU implementation

Kernels

CPU implementation

Kernels

Xbyak (x86 asm JIT)

C++ AOT

Threading layer

Eigen TBBOMP

CPU

OpenCL GPU implementation

Kernels
OpenCL C

GPU

DPC++ runtime

OpenCL GPU runtimeLevel0 (L0) GPU runtime

binary -> L0 -> SYCL
interoperability API

Dispatcher 2

4

4

6

C for Metal (CM)

1

nGEN (Gen asm JIT)

6

5

5

3

Intel® optimizations for PyTorch

Develop Fast Neural Networks on Intel® CPUs & GPUs

with Performance-optimized Building Blocks

47

PyTorch Optimization Strategy

▪ Early access/adoption of aggressive
optimizations through IPEX.

▪ Minimal line of code changes to get
benefit from IPEX.

Intel® Extension
for PyTorch
(IPEX)

• General IA feature
enabling and performance
optimizations in stock
PyTorch.

49

PyTorch-IPEX Demo

50

IPEX Architecture

51

IPEX Performance boosts (FP32)

5252

Single instance BF16 training performance gains over baseline (FP32
with Intel® Math Kernel Library for DLRM and BERT-Large, FP32 with
Intel® oneDNN for ResNext-101–32x4d), measured on single-socket
Intel(R) Xeon(R) Platinum 8380H Processor with 28 cores. The DLRM
model uses 2K mini-batch-size with Criteo terabyte dataset, and the
hyper-parameters use the MLPerf configuration. The BERT-large
model uses 24 mini-batch-size with WikiText dataset. The ResNext-
101–32x4d uses 128 mini-batch-size with ILSVRC2012 dataset.

1.55

1.81

2.42

0

0.5

1

1.5

2

2.5

3

DLRM BERT-Large ResNext-101-32x4d
B

F
1

6
 V

S
 F

P
3

2
 S

P
E

E
D

U
P

 R
A

T
IO

Deep Learning Training (BF16 vs FP32

Speedup Ratio)

5353

Inferencing
BF16 speedup vs
FP32 with IPEX

1.4 1.41

4.26

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

DLRM BERT-Large ResNext-101-32x4d
B

F
1

6
 V

S
 F

P
3

2
 S

P
E

E
D

U
P

 R
A

T
IO

Deep Learning Inferencing (BF16 vs

FP32 Speedup Ratio)

Multi-instance BF16 inference performance gains over baseline (FP32
with Intel® Math Kernel Library for DLRM and BERT-Large, FP32 with
Intel® oneDNN for ResNext-101–32x4d), measured on 8-socket
Intel(R) Xeon(R) Platinum 8380H Processor with 28 cores per socket.
The DLRM model uses 64 mini-batch-size per instance with Criteo
terabyte dataset, and the hyper-parameters use the MLPerf
configuration. The BERT-large model uses 1 mini-batch-size with
WikiTest dataset. The ResNext-101–32x4d uses 1 mini-batch-size with
ILSVRC2012 dataset.

Distributed deep learning with
Intel® oneCCL

55Intel® oneAPI Collective Communications Library 2022

oneCCL is included in the
Intel® oneAPI Base Toolkit oneCCL Product Page

Hardware

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html?cid=sem&source=sa360&campid=2021_q1_iags_us_iagsoapi_iagsoapiee_awa_text-link_brand_exact_cd_dpd-oneapi-base-toolkit_O-2J3MV_google_div_oos_non-pbm&ad_group=brand_oneapi-base-toolkit_awa&intel_term=intel+oneapi+base+toolkit&sa360id=43700053523136144&gclid=CjwKCAjwmv-DBhAMEiwA7xYrd9mklaTQD71AhHgr3UgdUU-rPZ22HynYsMwbqsVgIs-o7xkjdtMBYRoCp-8QAvD_BwE&gclsrc=aw.ds#gs.zcurl2
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/oneccl.html

56

Distributed AI on a real-world use-case
Problem Statement: AI Algorithm to segment* the Metabolic Tumour Volume
(MTV) in oesophageal cancer

* Segmentation: Find the contour of the tumor on the CT scan

57

AI solution to for tumor segmentation:

On-PremiseDatacenter

Deep Neural
Network

(U-Net model)

Trained
model

Labelled Data

Training

Inferencing

New patient
CT scan

58

Performance results

0

10

20

30

40

50

60

70

80

76.2

43.75 44.5

24.2

7.5
5.5

T
ra

in
in

g
 t

im
e

 (
h

o
u

rs
)

-
lo

w
e

r
is

b
e

tt
e

r

Run configurations

76.2

43.75

0

10

20

30

40

50

60

70

80

90

Tensorflow (Stock)

1 worker

1 node

(28 cores)

Intel-optimized Tensorflow

1 worker

1 node

(28 cores)

T
ra

in
in

g
 t

im
e

 (
h

o
u

rs
)

59

AI Software Stack for Intel® XPUs

60

Thank you

