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SPUMA the power of open-source CFD 
running on GPUs 
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What OpenFOAM is 

The physics of fluid flow affects virtually every sector of industrial and civil 
engineering, as well as taking part in a wide variety of more complex 
physical phenomena. Since the advent of digital computers in the second 
half of the 20th century, Computational Fluid Dynamics (CFD) has been an 
invaluable tool in the hands of scientists and engineers, to aid in design 
processes and reduce reliance on costly experiments. 

OPENFOAM®1 is an HPC-driven CFD software developed primarily by 
OpenCFD Ltd since 2004. It is free, open-source, and it has a wide 
international community of users in both industry and academia. 
OpenFOAM is a tool to solve Partial Differential Equations (PDEs) in 
Science and Engineering, ranging from complex fluid flows involving 
chemical reactions and turbulence to solid mechanics and 
electromagnetics. Among many other applications, OpenFOAM has been 
applied extensively to study external aerodynamics in the aerospace and 
automotive industries, in the turbomachinery field to evaluate the 
efficiency and the torque, and in HVAC simulations to predict the thermal 
exchange, flow field and humidity transport/generation.  

OpenFOAM uses the 2nd order collocated Finite Volume method to 
discretize PDEs in conservative form like the Navier-Stokes equations, the 
same algorithm that we find in commercial software (e.g. Ansys Fluent 
StarCCM+) used by companies in their CFD workflows. It works with 
unstructured meshes of generic polyhedral cells that can be generated 
both using the built-in meshers (e.g. snappyHexMesh) and commercial 
solutions (e.g. CFMesh+, Pointwise). 

 
 

1 OPENFOAM® is a registered trade mark of OpenCFD Limited, producer and distributor of the OpenFOAM software 
via www.openfoam.com. This offering is not approved or endorsed by OpenCFD Limited, producer and distributor of 
the OpenFOAM software via www.openfoam.com, and owner of the OpenFOAM  and OpenCFD®  trade marks. 

 

http://www.openfoam.com/
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HPC enabling technologies for High-Fidelity 
simulations 
OpenFOAM can run in parallel using the MPI (Message Passing Interface) 
paradigm and domain decomposition techniques, and it scales from the 
few cores of a laptop/workstation up to the tens of thousands of cores of a 
HPC cluster, a collection of many separate servers connected via a fast 
network. 

Due to its free and open-source nature, OpenFOAM has no license costs. It 
can be used on High-Performance Computing (HPC) clusters paying only 
for the computational resources required by the simulation. The parallel 
scalability of the code depends on many factors, some algorithmic and 
others related to hardware characteristics, but we can reasonably assume 
that a minimum number of 10,000 computational cells per CPU core is 
necessary. Such features allow OpenFOAM to be a cost-effective 
alternative to commercial software for complex simulations characterized 
by a high number of cells. 

The amount of computational power available to researchers and 
engineers has continuously grown thanks to the introduction, in recent 
years, of hybrid CPU - GPU clusters. This has led many, working in the 
industrial sector, to look beyond traditional Reynolds-Averaged Navier–
Stokes (RANS) approaches towards high-fidelity large-eddy simulations 
(LES) or hybrid RANS-LES simulations for industrial flow configurations. 
However, OpenFOAM was designed in the 1990s, in a context where the 
hardware was different from today as it consisted of single-core CPU 
configurations with access to much less RAM memory and no GPU 
(Graphical Processing Unit) acceleration for mathematical operations. 

CPUs are general purpose computing units implemented on integrated 
circuit microprocessors that have always been used for scientific 
computing, among other things. Only in recent times GPUs have been 
adopted to accelerate the computationally intensive part of a simulation. 
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The architecture of a GPU is different from its CPU counterpart since it was 
designed to accelerate digital image processing and computer graphics. To 
run software developed for CPUs on GPUs, it requires to be “ported” to the 
new architecture, a task that can be overwhelming if the code is made of 
millions of lines like OPENFOAM®. 

Nowadays, GPUs are the devices that provide most of the computational 
power of a cluster, measured in FLOPS (Floating Point Operations Per 
Second). As they are a crucial enabling technology for the development of 
AI, GPUs are evolving rapidly. They are characterized by a high memory 
bandwidth (in the order of Terabytes per second), that is particularly 
relevant for memory-bound applications like OPENFOAM®. The GPU-
enabling CFD code can have a dramatic impact in the industrial sector: 
high fidelity simulations could be executed using a limited number of GPUs 
in the same amount of time of low fidelity simulations using large amounts 
of CPU cores. 
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SPUMA: the first production-ready version of 
OpenFOAM running on GPU 
In recent years, vendors of commercial CFD software have started 
developing versions of their products able to run on GPU. There is a 
considerable interest by both developers and users of simulation software 
to exploit the considerable performance gains that accelerated hardware 
such as GPUs can offer. SPUMA (Simulation Processing on Unified Memory 
Accelerators) is a fork of OpenFOAM released by CINECA  that enable the 
software to run on GPUs. The open-source community that maintains 
OpenFOAM does not have the same amount of resources to dedicate to 
such an endeavour.  

An important reason for OPENFOAM®’s success is the modularity of its 
frontend: a high-level syntax for writing arbitrary sets of partial differential 
equations into executable solvers, allowing for the simulation of a wide 
variety of physical phenomena. On the other hand, its success as open-
source software is also due to the relative rigidity of its backend: low-level 
math routines are seldom changed, reducing the maintenance effort 
required by the code. 

There have been several attempts at porting OpenFOAM to GPU over the 
past decade, with varying degrees of success. These attempts did not 
consider a full rewrite, but rather focused on porting certain compute-
intensive parts of the code or integrating it with already existing frameworks 
for GPU integration (i.e. Thrust, Kokkos...). The former approach usually 
focused on the solution of systems of linear equations with GPU-ready 
linear algebra libraries. Since the integration of these libraries could be 
limited to self-contained plugins, it has found acceptance by the 
OpenFOAM community, however, the performance that can be gained by 
this approach is limited. The latter approach, while more promising in 
terms of performance, can significantly impact the low-level backend of 
the code with the introduction of API calls. For this reason, none of the 
porting attempts using existing frameworks have ever been included in 
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official releases of OpenFOAM and often the small teams developing them 
do not have the resources to maintain them as an independent fork of the 
code. 

CINECA started working on a GPU porting of OpenFOAM in the context of 
the EU-funded exaFOAM project that run from 2021 to 2024. The aim of the 
project was to investigate ways to increase the performance of OpenFOAM 
on modern hybrid high-performance computing platforms.  

CINECA started working on a proof-of-concept, GPU-ready, partial clone of 
OpenFOAM named zeptoFOAM, which showed that considerable 
performance gains can be achieved without significantly altering the high-
level algorithms and data structures of the code. With the experience 
gained working on this prototype and analysing the shortcomings of 
previous porting attempts, CINECA identified the following requirements 
for a successful port of the entire code: 

• Minimal impact on the code base: radical changes to OpenFOAM 
are less likely to be accepted by the community that maintains the 
code, and they make a hypothetical fork more difficult to maintain. 

• No dependency on external frameworks: aside from the problems 
already mentioned above, third-party frameworks generally do not 
allow for the same performance gains achieved using low-level APIs. 

• Efficient memory management: OpenFOAM creates short-lived 
data structures continuously, which impacts GPUs more than 
traditional architectures due to the higher cost for memory 
allocation. This problem can be solved with implicit memory 
management, using a memory pool. 

• Compatibility with multiple platforms: the philosophy behind 
OpenFOAM aims to ensure accessibility by the widest possible user 
base. This, in the past, was ensured using standard C++, however, no 
similar vendor-agnostic approach has yet emerged for GPUs. 
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The approach finally chosen by CINECA was inspired by the recent GPU 
porting of the  code NEKO, a modern implementation of the well-known 
high order CFD code Nek5000: several backends can be added to the 
framework in order to run on different hardware (e.g. NVIDIA, AMD, INTEL) 
but a unique frontend is used everywhere in the code. The front-end has no 
dependencies on third-party libraries which are confined in the various 
backends. 

This layer of abstraction, combined with the adoption of unified memory, a 
hardware/software technology feature available on recent GPU cards that 
allows to allocate a memory address space accessible by both CPUs and 
GPUs, produces a minimally invasive, vendor agnostic implementation. 
The solution we propose can run on both discrete GPUs and on more 
recent APUs which implement unified memory at a deeper level, at the 
same time it guarantees a neutral approach towards the adopted GPU 
paradigm (CUDA, HIP, OpenMP, OpenCL, etc...). 

 

 

 

 

 

 

 

 

 

 
 

 

https://www.sciencedirect.com/science/article/pii/S0045793024000756
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Accelerating CFD simulations with SPUMA: 
bigger simulations with less hardware 
One of the main issues in parallel computing is to have “almost perfect” 
scalable algorithms, i.e. algorithms that maintain the same efficiency by 
varying the number of processors. For very large problems this can be a 
challenge due to the communication overhead related to the huge number 
of messages. In OpenFOAM the situation is exacerbated by the serial 
operation of mesh decomposition, an operation that can take days to 
complete or even be unfeasible. 

A huge number of cells are required to accurately describe complex 
problems, such as High-Fidelity simulations. In these cases, it can be 
necessary to decompose the computational domain into tens of thousands 
of partitions, and each one is assigned to a different CPU core. As 
mentioned, increasing the number of processes above a certain threshold 
decreases the parallel efficiency of a code like OPENFOAM®, and 
additional computational resources bring diminishing returns. Additionally, 
Input/Output operations in OpenFOAM are segregated, meaning each 
process writes to a different set of files. For simulations running on 
thousands of cores, this causes significant strain on the file system.  

While CPUs perform better on smaller portions of the computational 
domain, GPUs, with their high memory bandwidth and large number of 
computational units, operate best when they are given large amounts of 
data. While for CPUs the optimal number of cells is in the order of 
thousands, for GPUs it is in the order of millions. This means that for large, 
high-fidelity simulations running on GPUs the number of partitions required 
to decompose the computational domain is considerably reduced, 
alleviating the problems related to parallel scalability mentioned above. In 
this regard, a GPU-ready version of OpenFOAM extends the range of 
applications of the software to much larger problems that would have been 
impractical on CPUs.  
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So far, large scale high-fidelity simulations require specialized high-order, 
high-performance simulation tools, developed mostly in academia and 
limited in their range of applicability to simple geometries and specific 
cases. Often, these limitations make them unsuitable for industrial 
applications. The ability, made possible by this GPU port, to use a versatile 
general-purpose tool like OpenFOAM for large-scale simulations brings 
them within reach of a much wider user base. Smaller industrial players 
that would not have been able to run simulations of this scale can now 
include them in their workflows. This creates vast opportunities for 
collaboration between the European SME ecosystem and the continent’s 
HPC infrastructure. 
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Showcase of SPUMA potential: automotive 
industry grade case 
Strong scaling results conducted on Leonardo HPC system (see Table 1) 
show a significant speed up of SPUMA when compared to standard 
OpenFOAM (v2412).  

 

Table 1: Hardware specifications of Leonardo HPC system 

Partition 
 

Booster DCGP 

Model Atos BullSequana X2135 "Da Vinci" 
single-node GPU blade 

Atos BullSequana 
X2140 three-node CPU 
blade 

Racks 116 22 
Nodes 3456 1536 
Processors Single socket 32 cores Intel Ice 

Lake CPU. 
1 x Intel Xeon Platinum 8358, 
2.60GHz TDP 250W 
 

Dual socket 56 cores 
Intel Sapphire Rapids 
CPU. 
2 x Intel Xeon Platinum 
8480p, 2.00 GHz TDP 
350W 
 
 

Accelerators 4 x NVIDIA Ampere GPUs/node, 
64GB HBM2e NVLink 3.0 
(200GB/s) 

- 

Cores 32 cores/node 112 cores/node 
RAM 512 (8x64) GB DDR4 3200 MHz 512 (16 x 32) GB DDR5 

4800 MHz 
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The test case chosen for these simulations is the DrivAer in the open-
closed cooling configuration taken from the OpenFOAM HPC repository, 
representing a production-like automotive RANS simulation consisting of 
236 million cells (see Figure 1). Figure 3 shows the streamlines of the flow 
around the geometry. Using this test we showcase the ability of SPUMA to 
seamlessly interoperate with a third-party linear algebra library, in this case 
AMGX (developed and released by NVIDIA), without additional host-device 
copies overhead, to offload the pressure equation solution to its algebraic 
multigrid framework. 

 

Figure 1: DrivAer Geometry, image courtesy of Charles Mockett, Hendrik Hetmann 
and Felix Kramer (Upstream CFD GmbH), 2022-2023 

Looking at the results shown in Figure 2, it emerges that a single A100 GPU 
of Leonardo is equivalent to approximately 220 CPU cores of the Leonardo 
Data Centric General Purpose partition (see Table 1), obtaining that 8 GPUs 
are faster than 1600 cores. 

https://develop.openfoam.com/committees/hpc/-/tree/develop/incompressible/simpleFoam/occDrivAerStaticMesh
https://github.com/NVIDIA/AMGX
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Figure 2: Strong scaling results of the HPC DrivAer test case: 
speedups relative to the 200 cores CPU run 

 
 

 

Figure 3: Visualization of streamlines around the DrivAer geometry, 
coloured with the pressure field 
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SPUMA’s potential for time and cost 
reductions 
The advantages brought by SPUMA are not limited to the increased access 
to large, high-fidelity simulations. For problems of equal size, GPU 
hardware allows for considerable speedups compared to CPUs. This is 
interesting for applications requiring low response times, such as weather 
forecasting or the racing industry. It should also be noted that GPUs have a 
much lower energy cost per FLOPS than traditional CPUs, reducing the 
economic burden as well as the environmental impact of CFD simulations. 

Additionally, for common industrial use cases, mesh sizes are generally 
around a few millions of cells, meaning that a single GPU may suffice for a 
wide range of applications. Soon, a PC workstation with one or two mid-tier 
GPUs installed could become a cost-effective alternative to a dedicated 
CPU-based server for the simulation workflows of many small and medium 
enterprises. 

 

 


