

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 2

SPUMA the power of open-source CFD
running on GPUs

Index

WHAT OPENFOAM IS ... 3

HPC ENABLING TECHNOLOGIES FOR HIGH-FIDELITY SIMULATIONS 4

SPUMA: THE FIRST PRODUCTION-READY VERSION OF FOAM RUNNING
ON GPU ... 6

ACCELERATING CFD SIMULATIONS WITH SPUMA: BIGGER SIMULATIONS
WITH LESS HARDWARE .. 9

SHOWCASE OF SPUMA POTENTIAL: AUTOMOTIVE INDUSTRY GRADE CASE
 .. 11

SPUMA’S POTENTIAL FOR TIME AND COST REDUCTIONS 14

This offering is not approved or endorsed by OpenCFD Limited, producer
and distributor of the OpenFOAM software via www.openfoam.com, and
owner of the OpenFOAM and OpenCFD® trade marks.

OPENFOAM® is a registered trade mark of OpenCFD Limited, producer and
distributor of the OpenFOAM software via www.openfoam.com

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 3

What OpenFOAM is

The physics of fluid flow affects virtually every sector of industrial and civil
engineering, as well as taking part in a wide variety of more complex
physical phenomena. Since the advent of digital computers in the second
half of the 20th century, Computational Fluid Dynamics (CFD) has been an
invaluable tool in the hands of scientists and engineers, to aid in design
processes and reduce reliance on costly experiments.

OPENFOAM®1 is an HPC-driven CFD software developed primarily by
OpenCFD Ltd since 2004. It is free, open-source, and it has a wide
international community of users in both industry and academia.
OpenFOAM is a tool to solve Partial Differential Equations (PDEs) in
Science and Engineering, ranging from complex fluid flows involving
chemical reactions and turbulence to solid mechanics and
electromagnetics. Among many other applications, OpenFOAM has been
applied extensively to study external aerodynamics in the aerospace and
automotive industries, in the turbomachinery field to evaluate the
efficiency and the torque, and in HVAC simulations to predict the thermal
exchange, flow field and humidity transport/generation.

OpenFOAM uses the 2nd order collocated Finite Volume method to
discretize PDEs in conservative form like the Navier-Stokes equations, the
same algorithm that we find in commercial software (e.g. Ansys Fluent
StarCCM+) used by companies in their CFD workflows. It works with
unstructured meshes of generic polyhedral cells that can be generated
both using the built-in meshers (e.g. snappyHexMesh) and commercial
solutions (e.g. CFMesh+, Pointwise).

1 OPENFOAM® is a registered trade mark of OpenCFD Limited, producer and distributor of the OpenFOAM software
via www.openfoam.com. This offering is not approved or endorsed by OpenCFD Limited, producer and distributor of
the OpenFOAM software via www.openfoam.com, and owner of the OpenFOAM and OpenCFD® trade marks.

http://www.openfoam.com/

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 4

HPC enabling technologies for High-Fidelity
simulations
OpenFOAM can run in parallel using the MPI (Message Passing Interface)
paradigm and domain decomposition techniques, and it scales from the
few cores of a laptop/workstation up to the tens of thousands of cores of a
HPC cluster, a collection of many separate servers connected via a fast
network.

Due to its free and open-source nature, OpenFOAM has no license costs. It
can be used on High-Performance Computing (HPC) clusters paying only
for the computational resources required by the simulation. The parallel
scalability of the code depends on many factors, some algorithmic and
others related to hardware characteristics, but we can reasonably assume
that a minimum number of 10,000 computational cells per CPU core is
necessary. Such features allow OpenFOAM to be a cost-effective
alternative to commercial software for complex simulations characterized
by a high number of cells.

The amount of computational power available to researchers and
engineers has continuously grown thanks to the introduction, in recent
years, of hybrid CPU - GPU clusters. This has led many, working in the
industrial sector, to look beyond traditional Reynolds-Averaged Navier–
Stokes (RANS) approaches towards high-fidelity large-eddy simulations
(LES) or hybrid RANS-LES simulations for industrial flow configurations.
However, OpenFOAM was designed in the 1990s, in a context where the
hardware was different from today as it consisted of single-core CPU
configurations with access to much less RAM memory and no GPU
(Graphical Processing Unit) acceleration for mathematical operations.

CPUs are general purpose computing units implemented on integrated
circuit microprocessors that have always been used for scientific
computing, among other things. Only in recent times GPUs have been
adopted to accelerate the computationally intensive part of a simulation.

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 5

The architecture of a GPU is different from its CPU counterpart since it was
designed to accelerate digital image processing and computer graphics. To
run software developed for CPUs on GPUs, it requires to be “ported” to the
new architecture, a task that can be overwhelming if the code is made of
millions of lines like OPENFOAM®.

Nowadays, GPUs are the devices that provide most of the computational
power of a cluster, measured in FLOPS (Floating Point Operations Per
Second). As they are a crucial enabling technology for the development of
AI, GPUs are evolving rapidly. They are characterized by a high memory
bandwidth (in the order of Terabytes per second), that is particularly
relevant for memory-bound applications like OPENFOAM®. The GPU-
enabling CFD code can have a dramatic impact in the industrial sector:
high fidelity simulations could be executed using a limited number of GPUs
in the same amount of time of low fidelity simulations using large amounts
of CPU cores.

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 6

SPUMA: the first production-ready version of
OpenFOAM running on GPU
In recent years, vendors of commercial CFD software have started
developing versions of their products able to run on GPU. There is a
considerable interest by both developers and users of simulation software
to exploit the considerable performance gains that accelerated hardware
such as GPUs can offer. SPUMA (Simulation Processing on Unified Memory
Accelerators) is a fork of OpenFOAM released by CINECA that enable the
software to run on GPUs. The open-source community that maintains
OpenFOAM does not have the same amount of resources to dedicate to
such an endeavour.

An important reason for OPENFOAM®’s success is the modularity of its
frontend: a high-level syntax for writing arbitrary sets of partial differential
equations into executable solvers, allowing for the simulation of a wide
variety of physical phenomena. On the other hand, its success as open-
source software is also due to the relative rigidity of its backend: low-level
math routines are seldom changed, reducing the maintenance effort
required by the code.

There have been several attempts at porting OpenFOAM to GPU over the
past decade, with varying degrees of success. These attempts did not
consider a full rewrite, but rather focused on porting certain compute-
intensive parts of the code or integrating it with already existing frameworks
for GPU integration (i.e. Thrust, Kokkos...). The former approach usually
focused on the solution of systems of linear equations with GPU-ready
linear algebra libraries. Since the integration of these libraries could be
limited to self-contained plugins, it has found acceptance by the
OpenFOAM community, however, the performance that can be gained by
this approach is limited. The latter approach, while more promising in
terms of performance, can significantly impact the low-level backend of
the code with the introduction of API calls. For this reason, none of the
porting attempts using existing frameworks have ever been included in

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 7

official releases of OpenFOAM and often the small teams developing them
do not have the resources to maintain them as an independent fork of the
code.

CINECA started working on a GPU porting of OpenFOAM in the context of
the EU-funded exaFOAM project that run from 2021 to 2024. The aim of the
project was to investigate ways to increase the performance of OpenFOAM
on modern hybrid high-performance computing platforms.

CINECA started working on a proof-of-concept, GPU-ready, partial clone of
OpenFOAM named zeptoFOAM, which showed that considerable
performance gains can be achieved without significantly altering the high-
level algorithms and data structures of the code. With the experience
gained working on this prototype and analysing the shortcomings of
previous porting attempts, CINECA identified the following requirements
for a successful port of the entire code:

• Minimal impact on the code base: radical changes to OpenFOAM
are less likely to be accepted by the community that maintains the
code, and they make a hypothetical fork more difficult to maintain.

• No dependency on external frameworks: aside from the problems
already mentioned above, third-party frameworks generally do not
allow for the same performance gains achieved using low-level APIs.

• Efficient memory management: OpenFOAM creates short-lived
data structures continuously, which impacts GPUs more than
traditional architectures due to the higher cost for memory
allocation. This problem can be solved with implicit memory
management, using a memory pool.

• Compatibility with multiple platforms: the philosophy behind
OpenFOAM aims to ensure accessibility by the widest possible user
base. This, in the past, was ensured using standard C++, however, no
similar vendor-agnostic approach has yet emerged for GPUs.

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 8

The approach finally chosen by CINECA was inspired by the recent GPU
porting of the code NEKO, a modern implementation of the well-known
high order CFD code Nek5000: several backends can be added to the
framework in order to run on different hardware (e.g. NVIDIA, AMD, INTEL)
but a unique frontend is used everywhere in the code. The front-end has no
dependencies on third-party libraries which are confined in the various
backends.

This layer of abstraction, combined with the adoption of unified memory, a
hardware/software technology feature available on recent GPU cards that
allows to allocate a memory address space accessible by both CPUs and
GPUs, produces a minimally invasive, vendor agnostic implementation.
The solution we propose can run on both discrete GPUs and on more
recent APUs which implement unified memory at a deeper level, at the
same time it guarantees a neutral approach towards the adopted GPU
paradigm (CUDA, HIP, OpenMP, OpenCL, etc...).

https://www.sciencedirect.com/science/article/pii/S0045793024000756

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 9

Accelerating CFD simulations with SPUMA:
bigger simulations with less hardware
One of the main issues in parallel computing is to have “almost perfect”
scalable algorithms, i.e. algorithms that maintain the same efficiency by
varying the number of processors. For very large problems this can be a
challenge due to the communication overhead related to the huge number
of messages. In OpenFOAM the situation is exacerbated by the serial
operation of mesh decomposition, an operation that can take days to
complete or even be unfeasible.

A huge number of cells are required to accurately describe complex
problems, such as High-Fidelity simulations. In these cases, it can be
necessary to decompose the computational domain into tens of thousands
of partitions, and each one is assigned to a different CPU core. As
mentioned, increasing the number of processes above a certain threshold
decreases the parallel efficiency of a code like OPENFOAM®, and
additional computational resources bring diminishing returns. Additionally,
Input/Output operations in OpenFOAM are segregated, meaning each
process writes to a different set of files. For simulations running on
thousands of cores, this causes significant strain on the file system.

While CPUs perform better on smaller portions of the computational
domain, GPUs, with their high memory bandwidth and large number of
computational units, operate best when they are given large amounts of
data. While for CPUs the optimal number of cells is in the order of
thousands, for GPUs it is in the order of millions. This means that for large,
high-fidelity simulations running on GPUs the number of partitions required
to decompose the computational domain is considerably reduced,
alleviating the problems related to parallel scalability mentioned above. In
this regard, a GPU-ready version of OpenFOAM extends the range of
applications of the software to much larger problems that would have been
impractical on CPUs.

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 10

So far, large scale high-fidelity simulations require specialized high-order,
high-performance simulation tools, developed mostly in academia and
limited in their range of applicability to simple geometries and specific
cases. Often, these limitations make them unsuitable for industrial
applications. The ability, made possible by this GPU port, to use a versatile
general-purpose tool like OpenFOAM for large-scale simulations brings
them within reach of a much wider user base. Smaller industrial players
that would not have been able to run simulations of this scale can now
include them in their workflows. This creates vast opportunities for
collaboration between the European SME ecosystem and the continent’s
HPC infrastructure.

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 11

Showcase of SPUMA potential: automotive
industry grade case
Strong scaling results conducted on Leonardo HPC system (see Table 1)
show a significant speed up of SPUMA when compared to standard
OpenFOAM (v2412).

Table 1: Hardware specifications of Leonardo HPC system

Partition

Booster DCGP

Model Atos BullSequana X2135 "Da Vinci"
single-node GPU blade

Atos BullSequana
X2140 three-node CPU
blade

Racks 116 22
Nodes 3456 1536
Processors Single socket 32 cores Intel Ice

Lake CPU.
1 x Intel Xeon Platinum 8358,
2.60GHz TDP 250W

Dual socket 56 cores
Intel Sapphire Rapids
CPU.
2 x Intel Xeon Platinum
8480p, 2.00 GHz TDP
350W

Accelerators 4 x NVIDIA Ampere GPUs/node,
64GB HBM2e NVLink 3.0
(200GB/s)

-

Cores 32 cores/node 112 cores/node
RAM 512 (8x64) GB DDR4 3200 MHz 512 (16 x 32) GB DDR5

4800 MHz

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 12

The test case chosen for these simulations is the DrivAer in the open-
closed cooling configuration taken from the OpenFOAM HPC repository,
representing a production-like automotive RANS simulation consisting of
236 million cells (see Figure 1). Figure 3 shows the streamlines of the flow
around the geometry. Using this test we showcase the ability of SPUMA to
seamlessly interoperate with a third-party linear algebra library, in this case
AMGX (developed and released by NVIDIA), without additional host-device
copies overhead, to offload the pressure equation solution to its algebraic
multigrid framework.

Figure 1: DrivAer Geometry, image courtesy of Charles Mockett, Hendrik Hetmann
and Felix Kramer (Upstream CFD GmbH), 2022-2023

Looking at the results shown in Figure 2, it emerges that a single A100 GPU
of Leonardo is equivalent to approximately 220 CPU cores of the Leonardo
Data Centric General Purpose partition (see Table 1), obtaining that 8 GPUs
are faster than 1600 cores.

https://develop.openfoam.com/committees/hpc/-/tree/develop/incompressible/simpleFoam/occDrivAerStaticMesh
https://github.com/NVIDIA/AMGX

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 13

Figure 2: Strong scaling results of the HPC DrivAer test case:
speedups relative to the 200 cores CPU run

Figure 3: Visualization of streamlines around the DrivAer geometry,
coloured with the pressure field

SP UM A : th e po wer o f o p en- so ur c e C F D r u nni ng o n G PU s 14

SPUMA’s potential for time and cost
reductions
The advantages brought by SPUMA are not limited to the increased access
to large, high-fidelity simulations. For problems of equal size, GPU
hardware allows for considerable speedups compared to CPUs. This is
interesting for applications requiring low response times, such as weather
forecasting or the racing industry. It should also be noted that GPUs have a
much lower energy cost per FLOPS than traditional CPUs, reducing the
economic burden as well as the environmental impact of CFD simulations.

Additionally, for common industrial use cases, mesh sizes are generally
around a few millions of cells, meaning that a single GPU may suffice for a
wide range of applications. Soon, a PC workstation with one or two mid-tier
GPUs installed could become a cost-effective alternative to a dedicated
CPU-based server for the simulation workflows of many small and medium
enterprises.

