Course/Event Essentials
Training Content and Scope
Other Information
Deep Learning (DL) has revolutionized the way of performing classification, pattern recognition, and regression tasks in various application areas. Scientific applications solving linear and non-linear equations with demanding accuracy and computational performance requirements can use a class of DL networks, called Physics-Informed Neural Networks (PINN). In fact, PINNs are specifically designed to integrate scientific computing equations, such as Ordinary Differential Equations (ODE), Partial Differential Equations (PDE), non-linear, and integral-differential equations into the DL network training.
This workshop introduces Scientific Machine Learning (SciML) with PINN and provides hands-on experience with the PDE solver NVIDIA Modulus, a neural network framework that blends the power of physics in the form of governing partial differential equations (PDEs) with data to build high-fidelity, parameterized surrogate models with near-real-time latency. This online Bootcamp is a hands-on learning experience where you will be guided through step-by-step instructions with teaching assistants on hand to help throughout.
The Bootcamp is co-organised by HLRS, OpenACC.org and NVIDIA for GCS, the Gauss Centre for Supercomputing.
Registration is done via www.openhackathons.org hosted by OpenACC-Standard.org. Your registration data will be transferred to these partners. For legal notes see the Privacy Policy.