Building Transformer-Based Natural Language Processing Applications

Course/Event Essentials

Event/Course Start
Event/Course End
Event/Course Format
Mixed

Venue Information

Country: Czech Republic
Venue Details: Click here

Training Content and Scope

Scientific Domain
Level of Instruction
Intermediate
Advanced
Sector of the Target Audience
Research and Academia
Language of Instruction

Other Information

Supporting Project(s)
EuroCC2/CASTIEL2
Event/Course Description

Applications for natural language processing (NLP) have exploded in the past decade. With the proliferation of AI assistants and organizations infusing their businesses with more interactive human-machine experiences, understanding how NLP techniques can be used to manipulate, analyze, and generate text-based data is essential. Modern techniques can capture the nuance, context and sophistication of language just as humans do. And when designed correctly, developers can use these techniques to build powerful NLP applications that provide natural and seamless human-computer interactions within chatbots, AI voice agents, and more. Deep learning models have gained widespread popularity for NLP because of their ability to accurately generalize over a range of contexts and languages. Transformer-based models, such as Bidirectional Encoder Representations from Transformers (BERT), have revolutionized NLP, offering accuracy comparable to human baselines on benchmarks like SQuAD for question-answer, entity recognition, intent recognition, sentiment analysis, and more.

In this workshop, you'll learn how to use Transformer-based natural language processing models for text classification tasks, such as categorizing documents. You'll also learn how to leverage Transformer-based models for named-entity recognition (NER) tasks and how to analyze various model features, constraints, and characteristics to determine which model is best suited for a particular use case based on metrics, domain specificity, and available resources.